Targeted Construction of Highly Selective Nanofiltration Membranes for Lithium-Magnesium Separation Based on the Sieving Mechanisms and Separation Models

Shichen Xiao, Xinyue Zhang, Xudong Wang, Lei Wang

Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 868-881.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 868-881. DOI: 10.7536/PC240814
Review

Targeted Construction of Highly Selective Nanofiltration Membranes for Lithium-Magnesium Separation Based on the Sieving Mechanisms and Separation Models

Author information +
History +

Abstract

As a globally strategic resource, lithium resources are crucial for the development of new energy sources. Due to the similar physical and chemical properties of lithium and magnesium, lithium extraction from saline lakes with high Mg/Li ratios is a great challenge. Therefore, it is of great significance to reverse customize nanofiltration (NF) membranes with high performance according to targeted applications. This article discusses the separation mechanisms such as size exclusion, dehydration effect, Donnan effect, and dielectric exclusion, guiding composite film creation for excellent Li⁺/Mg²⁺ sieving from a theoretical direction. Besides, based on the above separation mechanisms, this paper first comprehensively summarizes existing models (non-equilibrium thermodynamic model, charge model, steric hindrance pore model, etc.) for evaluating composite film parameters, which effectively reduces the number of experiments for the preparation of high-performance NF film in the early stage. Finally, we discuss the importance of utilizing the synergy of principles and models to jointly guide the construction of NF membranes that can effectively separate Li⁺/Mg²⁺ and point out that in the future, the structural parameters of the customized NF membranes should be more precise, and the construction of the separation models should be more relevant to the real scenario, so as to better guide the synthesis of NF films with superior separation performance.

Contents

1 Introduction

2 Exploration of separation mechanisms

2.1 Size exclusion

2.2 Dehydration effect

2.3 Donnan effect

2.4 Dielectric exclusion

2.5 Compensatory effect

2.6 Hydrophobic adsorption

3 Exploration of separation models

3.1 Non-equilibrium thermodynamics model

3.2 Steric hindrance pore model

3.3 Charge model

3.4 Electrostatic and steric-hindrance model

3.5 Donnan-steric pore model

3.6 Donnan-steric pore model with dielectric exclusion

3.7 Semi-empirical model

4 Conclusion and outlook

Key words

nanofiltration / lithium-magnesium separation / mono/divalent ions / separation mechanisms / separation models

Cite this article

Download Citations
Shichen Xiao , Xinyue Zhang , Xudong Wang , et al. Targeted Construction of Highly Selective Nanofiltration Membranes for Lithium-Magnesium Separation Based on the Sieving Mechanisms and Separation Models[J]. Progress in Chemistry. 2025, 37(6): 868-881 https://doi.org/10.7536/PC240814

References

[1]
Zhao Y, Mamrol N, Tarpeh W A, Yang X, Gao C J, Van der Bruggen B. Prog. Mater. Sci., 2022, 128: 100958.
[2]
Liang S S, Wang S, Chen L, Fang H P. Sep. Purif. Technol., 2020, 241: 116738.
[3]
Da̧browski A, Hubicki Z, Podkościelny P, Robens E. Chemosphere, 2004, 56(2): 91.
[4]
Srimuk P, Su X, Yoon J, Aurbach D, Presser V. Nat. Rev. Mater., 2020, 5(7): 517.
[5]
Jiang T Y, Yu Y, Jahanger A, Balsalobre-Lorente D. Sustain. Prod. Consum., 2022, 31: 346.
[6]
Yu S Y, Luo W L, Xie J Y, Mao Y, Xu C. Prog. Chem., 2023, 35(4): 620
(余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 化学进展, 2023, 35(4):620).
[7]
Wan H L, Wang Z Y, Zhang W R, He X Z, Wang C S. Nature, 2023, 623(7988): 739.
[8]
Xiao G Z, An R, Yang J X, Ma J L. Adv. Eng. Mater., 2024, 26(12): 2301639.
[9]
Zhang J X, Cheng Z Y, Qin X B, Gao X, Wang M, Xiang X. Desalination, 2023, 547: 116225.
[10]
Zhao X, Zhang Q, Wu H H, Hao X C, Wang L, Huang X P. Prog. Chem., 2017, 29(7): 796
(赵旭, 张琦, 武海虹, 郝晓翠, 王亮, 黄西平. 化学进展, 2017, 29(7):796).
[11]
Khalil A, Mohammed S, Hashaikeh R, Hilal N. Desalination, 2022, 528: 115611.
[12]
Zhang S X, Wei X, Cao X, Peng M W, Wang M, Jiang L, Jin J. Nat. Commun., 2024, 15: 238.
[13]
Wang Q, Zhao Y J, Liu Y, Wang Y H, Wang M, Xiang X. CIESC J., 2021, 72(6): 2905
(王琪, 赵有璟, 刘洋, 王云昊, 王敏, 项顼. 化工学报, 2021, 72(6): 2905).
[14]
Xie X Y, Huo H Q, Zhang W H, Zhao Y, Ji Y L, Van der Bruggen B, VGao C J. Chem. Eng. J., 2024, 487: 150617.
[15]
Zhang Y N, Yu D H, Jia C Y, Sun L Y, Tong A, Wang Y, Wang Y X, Huang L J, Tang J G. Desalination, 2023, 566: 116891.
[16]
Zhang T, Zheng W J, Wang Q Y, Wu Z C, Wang Z W. Desalination, 2023, 546: 116205.
[17]
Fang Y Y, Li Q, Wang X L. Prog. Chem., 2012, 24(5): 863
(方彦彦, 李倩, 王晓琳. 化学进展, 2012, 24(5): 863).
[18]
Peng Q, Wang R Y, Zhao Z L, Lin S H, Liu Y, Dong D Y, Wang Z, He Y M, Zhu Y Z, Jin J, Jiang L. Nat. Commun., 2024, 15: 2505.
[19]
Zhu Q Y, Xu Z Y, Fu J H, Huang J, Xu Z L, Tong M, Li E C, Tang Y J. Desalination, 2023, 558: 116623.
[20]
Zhang X Y, Zhang H H, Wang L, Wang J, Wang X D, Hao J J. Desalination, 2024, 578: 117422.
[21]
Zhang Z L, Wang L, Cheng L, Yang H, Tang Y J, Xu Z L. Membr. Sci. Technol., 2024, 44(2): 1
(张桢琳, 王露, 程亮, 杨虎, 汤永健, 许振良. 膜科学与技术, 2024, 44(2):1).
[22]
Liu M L, Zhang C X, Tang M J, Sun S P, Xing W H, Lee Y M. Prog. Mater. Sci., 2023, 139: 101162.
[23]
Peng H Y, Lau S K, Yong W F. Adv. Membr., 2024, 4: 100093.
[24]
Wu D H, Huang Y F, Yu S C, Lawless D, Feng X S. J. Membr. Sci., 2014, 472: 141.
[25]
Li W, Shi C, Zhou A Y, He X, Sun Y W, Zhang J L. Sep. Purif. Technol., 2017, 186: 233.
[26]
Zhu J Y, Yuan S S, Wang J, Zhang Y T, Tian M M, Van der Bruggen B. Prog. Polym. Sci., 2020, 110: 101308.
[27]
Yang Z, Ma X H, Tang C Y. Desalination, 2018, 434: 37.
[28]
Tan Z, Chen S F, Peng X S, Zhang L, Gao C J. Science, 2018, 360(6388): 518.
[29]
Wang L A, He H M, Gan Q M, Guo H, Yang Z, Xu L Z, Tang C Y. Nano Lett., 2024, 24(24): 7373.
[30]
Zhang Q, Liu H L, Sun Y M, Xiong H Y, Huang Q L, Chen K K, Xiao C F. Sep. Purif. Technol., 2025, 354: 129027.
[31]
Yuan B B, Jiang C, Li P F, Sun H H, Li P, Yuan T, Sun H X, Niu Q J. ACS Appl. Mater. Interfaces, 2018, 10(49): 43057.
[32]
Zhang N, Yu H C, Zhang J D, Jiang X B, Yin S H, Zhou G L, Zhang X P, Bao J J, He G H. Sep. Purif. Technol., 2023, 327: 124818.
[33]
Hu P, Yuan B B, Niu Q J, Chen K, Xu Z W, Tian B Z, Zhang X Z. Desalination, 2022, 527: 115553.
[34]
Guo S W, Yuan B, Wu J C, Wang H, Luo J Q, Yuan C G. Desalination, 2024, 571: 117112.
[35]
Liu S Q, Wang Z G, Zhao L, Fang W X, Zhang F, Jin J. J. Membr. Sci., 2023, 682: 121787.
[36]
Liang Y Z, Zhu Y Z, Liu C, Lee K R, Hung W S, Wang Z Y, Li Y Y, Elimelech M, Jin J, Lin S H. Nat. Commun., 2020, 11: 2015.
[37]
Wang Y R, Chang H L, Jiang S, Chen J L, Wang J L, Liang H, Li G B, Tang X B. J. Membr. Sci., 2023, 677: 121615.
[38]
Chen K, Li F Y, Wei T, Zhou H Y, Zhang T F, Zhao S C, Xie T T, Sun H X, Li P, Niu Q J. J. Membr. Sci., 2023, 684: 121882.
[39]
Chen Z B, Hu C Z, Lu C H, Sun J Q, Zhang Y Y, Wang F Y, Qu J H. ACS Nano, 2023, 17(13): 12629.
[40]
Richards L A, Schäfer A I, Richards B S, Corry B. Small, 2012, 8(11): 1701.
[41]
Epsztein R, Shaulsky E, Qin M H, Elimelech M. J. Membr. Sci., 2019, 580: 316.
[42]
Zhai X H, Wang Y L, Dai R B, Li X S, Wang Z W. Environ. Sci. Technol., 2022, 56(19): 14069.
[43]
Liu M L, Chen Y, Hu C, Zhang C X, Fu Z J, Xu Z J, Lee Y M, Sun S P. Nat. Commun., 2024, 15: 7271.
[44]
Shefer I, Peer-Haim O, Leifman O, Epsztein R. Environ. Sci. Technol., 2021, 55(21): 14863.
[45]
Pavluchkov V, Shefer I, Peer-Haim O, Blotevogel J, Epsztein R. J. Membr. Sci., 2022, 648: 120358.
[46]
Nightingale E R Jr. J. Phys. Chem., 1959, 63(9): 1381.
[47]
Tansel B. Sep. Purif. Technol., 2012, 86: 119.
[48]
Choi S, Yun Z, Hong S, Ahn K. Desalination, 2001, 133(1): 53.
[49]
Guo S W, Yan X L, Luo Z Y, Zhang J H, Yuan C G. Desalination, 2024, 586: 117780.
[50]
Xu P, Wang W, Qian X M, Wang H B, Guo C S, Li N, Xu Z W, Teng K Y, Wang Z. Desalination, 2019, 449: 57.
[51]
Xiang J, Xie Z L, Hoang M, Zhang K S. Desalination, 2013, 315: 156.
[52]
Liu Y H, Li Q, Wang S H, Liang M Z, Ji Y H, Cui Z Y, Younas M, Li J X, He B Q. Sep. Purif. Technol., 2023, 308: 122968.
[53]
Zhang S Y, Zhang R N, Li R L, Zhang Z X, Li Y F, Deng H, Zhao J H, Gu T R, Long M Y, Wang X Y, Zhang S, Jiang Z Y. J. Membr. Sci., 2022, 663: 121063.
[54]
Foo Z H, Rehman D, Bouma A T, Monsalvo S, Lienhard J H. Environ. Sci. Technol., 2023, 57(15): 6320.
[55]
Liu X F, Feng Y X, Ni Y X, Peng H W, Li S P, Zhao Q. J. Membr. Sci., 2023, 667: 121178.
[56]
Wang E L, Lv X H, Liu S X, Dong Q, Li J Y, Li H H, Su B W. Membranes, 2024, 14(1): 1.
[57]
Yaroshchuk A E. Adv. Colloid Interface Sci., 2000, 85(2/3): 193.
[58]
Zhai X H, Lin S H, Li X S, Wang Z W. Environ. Sci. Technol., 2024, 58(35): 15874.
[59]
Rehman D, Sheriff F, Lienhard J H. Water Res., 2023, 243: 120325.
[60]
Yaroshchuk A E. Sep. Purif. Technol., 2001, 22/23: 143.
[61]
Freger V. Adv. Colloid Interface Sci., 2023, 319: 102972.
[62]
Zheng H, Mou Z H, Lim Y J, Liu B, Wang R, Zhang W, Zhou K. J. Membr. Sci., 2023, 672: 121401.
[63]
Chen Y J, Zhu Y D, Ruan Y, Zhao N N, Liu W, Zhuang W, Lu X H. Carbon, 2019, 144: 32.
[64]
Ruan Y, Zhu Y D, Zhang Y M, Gao Q W, Lu X H, Lu L H. Langmuir, 2016, 32(51): 13778.
[65]
Zhu Y D, Ruan Y, Zhang Y M, Chen Y J, Lu X H, Lu L H. Langmuir, 2017, 33(36): 9201.
[66]
Xu F, Dai L H, Wu Y L, Xu Z. J. Membr. Sci., 2021, 636: 119542.
[67]
Braeken L, Ramaekers R, Zhang Y, Maes G, Van der Bruggen B, Vandecasteele C. J. Membr. Sci., 2005, 252(1/2): 195.
[68]
Li M, Sun F Y, Shang W T, Zhang X L, Dong W Y, Dong Z J, Zhao S F. Chem. Eng. J., 2021, 406: 126814.
[69]
Bruni L, Bandini S. Desalination, 2009, 241(1/3): 315.
[70]
Kedem O, Katchalsky A. Biochim. Biophys. Acta, 1958, 27: 229.
[71]
Ballet G T, Gzara L, Hafiane A, Dhahbi M. Desalination, 2004, 167: 369.
[72]
Murthy Z V P, Choudhary A. Rare Met., 2012, 31(5): 500.
[73]
Hidalgo A M, Gómez M, Murcia M D, Gómez E, León G, Alfaro I. Membranes, 2023, 13(11): 868.
[74]
Spiegler K S, Kedem O. Desalination, 1966, 1(4): 311.
[75]
Nakao S I, Kimura S. J. Chem. Eng. Japan, 1982, 15(3): 200.
[76]
Nair R R, Protasova E, Strand S, Bilstad T. Membranes, 2018, 8(3): 78.
[77]
Fang Y Y, Bian L X, Bi Q Y, Li Q, Wang X L. J. Membr. Sci., 2014, 454: 390.
[78]
Sun S Y, Cai L J, Nie X Y, Song X F, Yu J G. J. Water Process. Eng., 2015, 7: 210.
[79]
Du Y C, Pramanik B K, Zhang Y, Jegatheesan V. Desalination, 2022, 541: 116020.
[80]
Abu Seman M N, Ali N, Jalanni N A, Che Ku Yahya C K M F, Yatim N I. Sains Malays., 2023, 52(3): 941.
[81]
Wang R Y, Lin S H. J. Membr. Sci., 2021, 620: 118809.
[82]
Teorell T. Discuss. Faraday Soc., 1956, 21: 9.
[83]
Meyer K H, Sievers J F. Helv. Chim. Acta, 1936, 19(1): 649.
[84]
Imteyaz S, Rafiuddin R. RSC Adv., 2015, 5(116): 96008.
[85]
Romero V, Gelde L, Benavente J. Membranes, 2023, 13(8): 739.
[86]
Zehra A, Khan M M A, Rafiuddin. J. Solid State Electrochem., 2021, 25(2): 489.
[87]
Morrison F A Jr, Osterle J F. J. Chem. Phys., 1965, 43(6): 2111.
[88]
Nguyen D T, Pham V S. Sep. Purif. Technol., 2024, 333: 125929.
[89]
Wang X L, Tsuru T, Togoh M, Nakao S I, Kimura S.J. Chem. Eng. Japan, 1995, 28(4): 372.
[90]
Ding Y, Zhu J Z, Liu D. Water Environ. Res., 2021, 93(9): 1748.
[91]
Bowen W R, Mukhtar H. J. Membr. Sci., 1996, 112(2): 263.
[92]
Bowen W R, Mohammad A W, Hilal N. J. Membr. Sci., 1997, 126(1): 91.
[93]
Bowen W R, Mohammad A W. Chem. Eng. Res. Des., 1998, 76(8): 885.
[94]
Labbez C, Fievet P, Szymczyk A, Vidonne A, Foissy A, Pagetti J. J. Membr. Sci., 2002, 208(1/2): 315.
[95]
Qadir D, Idris A, Nasir R, Abdul Mannan H, Sharif R, Mukhtar H. Chemosphere, 2023, 311: 136987.
[96]
Mohammad A W, Hilal N, Al-Zoubi H, Darwish N A. J. Membr. Sci., 2007, 289(1/2): 40.
[97]
Yang G, Shi H, Liu W Q, Xing W H, Xu N P. Chin. J. Chem. Eng., 2011, 19(4): 586.
[98]
Dutta M, Bairoju S, De S. J. Membr. Sci., 2023, 675: 121577.
[99]
Bowen W R, Welfoot J S. Chem. Eng. Sci., 2002, 57(7): 1121.
[100]
Saavedra A, Valdés H, Velásquez J, Hernández S. ChemEngineering, 2024, 8(2): 39.
[101]
Roy Y, Warsinger D M, Lienhard J H. Desalination, 2017, 420: 241.
[102]
Ghorbani A, Bayati B, Drioli E, Macedonio F, Kikhavani T, Frappa M. Membranes, 2021, 11(4): 230.
[103]
Cevallos-Cueva N, Rahman M M, Hailu Kinfu H, Abetz V. Chem. Eng. J., 2024, 493: 152775.
[104]
Wang D X, Wang X L, Tomi Y, Ando M, Shintani T. J. Membr. Sci., 2006, 280(1/2): 734.
[105]
Wang D X, Wu L, Liao Z D, Wang X L, Tomi Y, Ando M, Shintani T. J. Membr. Sci., 2006, 284(1/2): 384.
[106]
Bi Q Y, Cheng Q, Meng Y T, Ma L, Guan Y S. Desalin. Water Treat., 2020, 190: 44.

Funding

National Key Research and Development Program of China(2022YFC2904300)
Shaanxi Provincial Key Science and Technology Innovation Team Program(2024RS-CXTD-51)

Accesses

Citation

Detail

Sections
Recommended

/