Fluorinated Solvents as High Performance Electrolytes for Lithium Metal Batteries

Yunpeng Fu, Wanglei Chen, Xin Zhou, Yang Wang, Jinglun Wang

Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 934-948.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 934-948. DOI: 10.7536/PC240816
Review

Fluorinated Solvents as High Performance Electrolytes for Lithium Metal Batteries

Author information +
History +

Abstract

Lithium metal batteries (LMBs) have attracted significant attention due to their remarkable energy density. Yet, challenges surrounding safety and cycling stability have existed as crucial factors impeding their practical application. The development of an efficient electrolyte, which stands as a vital component in LMBs, serves as a key strategy to tackle those issues. In this review, the fluorinated solvent for lithium metal batteries is summarized in detail for the follow three reasons: (1) because of the strong electron-withdrawing effect of fluorine atoms, the fluorination of electrolyte solvents can reduce the HOMO and LUMO energy level, facilitating the generation of a robust solid electrolyte interface layer enriched with LiF on the lithium metal anode's surface; (2) fluorination can alter the electrostatic potential distribution of electrolyte solvents, thereby modifying coordination sites and regulating solvation structures; (3) the fluorination of solvents can also enhance the temperature endurance and flame retardance of the electrolyte. According to the chemical structures, fluorinated carbonates, fluorinated ethers, fluorinated carboxylates, fluorinated siloxanes, and fluorinated nitriles are elucidated elaborately based on the degree of fluorination and position of fluorine substitution. The relationships between the chemical structures of fluorinated solvents and the solvation structure, interfacial compatibility, and cell performances are described systematically. This review summarizes and provides insights into the future development prospects on fluorinated solvents for lithium metal batteries.

Contents

1 Introduction

2 Fluorinated carbonate based solvents

2.1 Fluorinated cyclic carbonate

2.2 Fluorinated linear carbonate

3 Fluorinated ether based solvents

3.1 Fluorinated cyclic ether

3.2 Fluorinated linear ether

3.3 Partial fluorinated ether

4 Other fluorinated solvents

5 Conclusion and outlook

Key words

lithium metal batteries / electrolyte / fluorinated solvents / solvation structure / solid electrolyte interface

Cite this article

Download Citations
Yunpeng Fu , Wanglei Chen , Xin Zhou , et al . Fluorinated Solvents as High Performance Electrolytes for Lithium Metal Batteries[J]. Progress in Chemistry. 2025, 37(6): 934-948 https://doi.org/10.7536/PC240816

References

[1]
Zhang X, Yang Y A, Zhou Z. Chem. Soc. Rev., 2020, 49(10): 3040.
[2]
Hu Z L, Li J Y, Zhang X J, Zhu Y R. Front. Chem., 2020, 8: 409.
[3]
Wang R H, Cui W S, Chu F L, Wu F X. J. Energy Chem., 2020, 48: 145.
[4]
Zhao Q, Stalin S, Archer L A. Joule, 2021, 5(5): 1119.
[5]
Wang J L, Ran Q, Han C Y, Tang Z L, Chen Q D, Qin X Y. Prog. Chem., 2020, 32(4): 467
(汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 化学进展, 2020, 32(4): 467).
[6]
Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(27): 7764.
[7]
Liu W, Lin D C, Pei A, Cui Y. J. Am. Chem. Soc., 2016, 138(47): 15443.
[8]
Luo Z, Liu C, Tian Y, Zhang Y, Jiang Y L, Hu J H, Hou H S, Zou G Q, Ji X B. Energy Storage Mater., 2020, 27: 124.
[9]
Li C G, Li S, Liu C M, Zhang Y F, Deng P R, Guo Y J, Wang J Q, Wang Y. Mater. Chem. Phys., 2019, 234: 9.
[10]
Hong X J, Song C L, Yang Y, Tan H C, Li G H, Cai Y P, Wang H X. ACS Nano, 2019, 13(2): 1923.
[11]
Liu K, Pei A, Lee H R, Kong B, Liu N, Lin D C, Liu Y Y, Liu C, Hsu P C, Bao Z N, Cui Y. J. Am. Chem. Soc., 2017, 139(13): 4815.
[12]
Lu L L, Zhang Y, Pan Z, Yao H B, Zhou F, Yu S H. Energy Storage Mater., 2017, 9: 31.
[13]
Wang Z J, Zhang B. Energy Mater. Devices, 2023, 1(1): 9370003.
[14]
Xu K. Chem. Rev., 2014, 114: 11503.
[15]
Wu J R, Gao Z Y, Wang Y, Yang X, Liu Q, Zhou D, Wang X S, Kang F Y, Li B H. Nano-Micro Lett., 2022, 14: 147.
[16]
Yang Q F, Li C L. Energy Storage Mater., 2018, 14: 100.
[17]
Yu Z, Balsara N P, Borodin O, Gewirth A A, Hahn N T, Maginn E J, Persson K A, Srinivasan V, Toney M F, Xu K, Zavadil K R, Curtiss L A, Cheng L. ACS Energy Lett., 2022, 7(1): 461.
[18]
Yamada Y, Yamada A. J. Electrochem. Soc., 2015, 162(14): A2406.
[19]
Yao N, Chen X, Fu Z H, Zhang Q. Chem. Rev., 2022, 122(12): 10970.
[20]
Efaw C M, Wu Q S, Gao N, Zhang Y G, Zhu H Y, Gering K, Hurley M F, Xiong H, Hu E Y, Cao X, Xu W, Zhang J G, Dufek E J, Xiao J, Yang X Q, Liu J, Qi Y, Li B. Nat. Mater., 2023, 22(12): 1531.
[21]
Qian J F, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. Nat. Commun., 2015, 6: 6362.
[22]
Chen S M, Deng Z K, Li J X, Zhao W G, Nan B W, Zuo Y, Fang J J, Huang Y X, Yin Z W, Pan F, Yang L Y. Angew. Chem. Int. Ed., 2025, 64(1): e202413927.
[23]
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Chem., 2018, 4(8): 1877.
[24]
Zhou X Z, Zhang Q, Zhu Z, Cai Y C, Li H X, Li F J. Angew. Chem. Int. Ed., 2022, 61(30): e202205045.
[25]
Ren Q M, Wang Q L, Li Y W, Song X S, Shangguan X H, Li F Q. Prog. Chem., 2023, 35(07): 1077
(任启蒙, 王青磊, 李因文, 宋学省, 上官雪慧, 李法强. , 化学进展, 2023, 35(07): 1077).
[26]
Cao X, Gao P Y, Ren X D, Zou L F, Engelhard M H, Matthews B E, Hu J T, Niu C J, Liu D Y, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(9): e2020357118.
[27]
Chen Y Q, He Q, Zhao Y, Zhou W, Xiao P T, Gao P, Tavajohi N, Tu J, Li B H, He X M, Xing L D, Fan X L, Liu J L. Nat. Commun., 2023, 14: 8326.
[28]
Huang G Y, Dong X, Du J W, Sun X H, Li B T, Ye H M. Prog. Chem., 2021, 33(05): 855
(黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 化学进展, 2021, 33(05): 855).
[29]
Wang Y K, Li Z M, Hou Y P, Hao Z M, Zhang Q, Ni Y X, Lu Y, Yan Z H, Zhang K, Zhao Q, Li F J, Chen J. Chem. Soc. Rev., 2023, 52(8): 2713.
[30]
Ran Q, Wang J L, Tang A P. J.Liaocheng Univ. Nat. Sci. Ed., 2021, 34(3): 55
(冉琴, 汪靖伦, 唐安平. 聊城大学学报(自然科学版), 2021, 34(3): 55).
[31]
Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Adv. Funct. Mater., 2017, 27(10): 1605989.
[32]
Liu Q C, Xu J J, Yuan S, Chang Z W, Xu D, Yin Y B, Li L, Zhong H X, Jiang Y S, Yan J M, Zhang X B. Adv. Mater., 2015, 27(35): 5241.
[33]
Jung R, Metzger M, Haering D, Solchenbach S, Marino C, Tsiouvaras N, Stinner C, Gasteiger H A. J. Electrochem. Soc., 2016, 163(8): A1705.
[34]
Brown Z L, Jurng S, Nguyen C C, Lucht B L. ACS Appl. Energy Mater., 2018, 1(7): 3057.
[35]
Park S J, Hwang J Y, Yoon C S, Jung H G, Sun Y K. ACS Appl. Mater. Interfaces, 2018, 10(21): 17985.
[36]
Salitra G, Markevich E, Afri M, Talyosef Y, Hartmann P, Kulisch J, Sun Y K, Aurbach D. ACS Appl. Mater. Interfaces, 2018, 10(23): 19773.
[37]
Li T, Zhang X Q, Shi P, Zhang Q. Joule, 2019, 3(11): 2647.
[38]
Wang Z X, Sun Z H, Shi Y, Qi F L, Gao X N, Yang H C, Cheng H M, Li F. Adv. Energy Mater., 2021, 11(28): 2100935.
[39]
Suo L M, Xue W J, Gobet M, Greenbaum S G, Wang C, Chen Y M, Yang W L, Li Y X, Li J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(6): 1156.
[40]
Hagos T T, Thirumalraj B, Huang C J, Abrha L H, Hagos T M, Berhe G B, Bezabh H K, Cherng J, Chiu S F, Su W N, Hwang B J. ACS Appl. Mater. Interfaces, 2019, 11(10): 9955.
[41]
Wang W, Zhang J L, Yang Q, Wang S W, Wang W H, Li B H. ACS Appl. Mater. Interfaces, 2020, 12(20): 22901.
[42]
Trinh N D, Lepage D, Aymé-Perrot D, Badia A, Dollé M, Rochefort D. Angew. Chem. Int. Ed., 2018, 57(18): 5072.
[43]
Yan C, Cheng X B, Tian Y, Chen X, Zhang X Q, Li W J, Huang J Q, Zhang Q. Adv. Mater., 2018, 30(25): 1707629.
[44]
Chen L, Fan X L, Hu E Y, Ji X, Chen J, Hou S, Deng T, Li J, Su D, Yang X Q, Wang C S. Chem., 2019, 5(4): 896.
[45]
Deng L Q, Dong L T, Wang Z F, Liu Y Y, Zhan J, Wang S H, Song K P, Qi D Q, Sang Y H, Liu H, Chen H. Adv. Energy Mater., 2024, 14(4): 2303652.
[46]
Fan X L, Chen L, Borodin O, Ji X, Chen J, Hou S, Deng T, Zheng J, Yang C Y, Liou S C, Amine K, Xu K, Wang C S. Nat. Nanotechnol., 2018, 13(12): 1191.
[47]
Zhang Y M, Viswanathan V. J. Phys. Chem. Lett., 2021, 12(24): 5821.
[48]
Sasaki Y, Satake H, Tsukimori N, Nanbu N, Takehara M, Makoto U E. Electrochemistry, 2010, 78(5): 467.
[49]
Yu Z A, Yu W L, Chen Y L, Mondonico L, Xiao X, Zheng Y, Liu F, Hung S T, Cui Y, Bao Z N. J. Electrochem. Soc., 2022, 169(4): 040555.
[50]
Chen Y H, Ma Z, Wang Y Q, Kumar P, Zhao F, Cai T, Cao Z, Cavallo L, Cheng H R, Li Q, Ming J. Energy Environ. Sci., 2024, 17(15): 5613.
[51]
Wu M, Wang Z Y, Zhang W R, Jayawardana C, Li Y, Chen F, Nan B, Lucht B L, Wang C S. Angew. Chem. Int. Ed., 2023, 62(8): e202216169.
[52]
Zhou T H, Zhao Y, El Kazzi M, Choi J W, Coskun A. Angew. Chem. Int. Ed., 2022, 61(19): e202115884.
[53]
Li G X, Koverga V, Nguyen A, Kou R, Ncube M, Jiang H, Wang K, Liao M, Guo H Z, Chen J, Dandu N, Ngo A T, Wang D H. Nat. Energy, 2024, 9(7): 817.
[54]
Zhao Y, Zhou T H, Ashirov T, El Kazzi M, Cancellieri C, Jeurgens L P H, Choi J W, Coskun A. Nat. Commun., 2022, 13: 2575.
[55]
Zhao Y, Zhou T H, El Kazzi M, Coskun A. ACS Appl. Energy Mater., 2022, 5(6): 7784.
[56]
Ma P Y, Mirmira P, Amanchukwu C V. ACS Cent. Sci., 2021, 7(7): 1232.
[57]
Wang R, Li J W, Han B, Wang Q R, Ke R H, Zhang T, Ao X H, Zhang G Z, Liu Z B, Qian Y X, Pan F F, Lynch I, Wang J, Deng Y H. J. Energy Chem., 2024, 88: 532.
[58]
Chen J H, Lu H C, Kong X R, Liu J, Liu J Q, Yang J, Nuli Y N, Wang J L. Angew. Chem. Int. Ed., 2024, 63(23): e202317923.
[59]
Zhao Y, Zhou T H, Mensi M, Choi J W, Coskun A. Nat. Commun., 2023, 14: 299.
[60]
Amanchukwu C V, Yu Z A, Kong X, Qin J, Cui Y, Bao Z N. J. Am. Chem. Soc., 2020, 142(16): 7393.
[61]
Yu Z A, Wang H S, Kong X, Huang W, Tsao Y, Mackanic D G, Wang K C, Wang X C, Huang W X, Choudhury S, Zheng Y, Amanchukwu C V, Hung S T, Ma Y T, Lomeli E G, Qin J, Cui Y, Bao Z N. Nat. Energy, 2020, 5(7): 526.
[62]
Wang H S, Yu Z A, Kong X, Huang W, Zhang Z W, Mackanic D G, Huang X Y, Qin J, Bao Z N, Cui Y. Adv. Mater., 2021, 33(25): 2008619.
[63]
Hossain M J, Wu Q S, Marin Bernardez E J, Quilty C D, Marschilok A C, Takeuchi E S, Bock D C, Takeuchi K J, Qi Y. J. Phys. Chem. Lett., 2023, 14(34): 7718.
[64]
Lin Y J, Yu Z A, Yu W L, Liao S L, Zhang E, Guo X L, Huang Z J, Chen Y L, Qin J, Cui Y, Bao Z N. J. Mater. Chem. A, 2024, 12(5): 2986.
[65]
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z B, Gao Y, Zheng Z J, Deng Y H, Wang C Y. Nano Energy, 2022, 95: 107014.
[66]
Zhang G Z, Chang J, Wang L G, Li J W, Wang C Y, Wang R, Shi G L, Yu K, Huang W, Zheng H H, Wu T P, Deng Y H, Lu J. Nat. Commun., 2023, 14: 1081.
[67]
Ruan D G, Tan L J, Chen S Q, Fan J J, Nian Q S, Chen L, Wang Z H, Ren X D. JACS Au., 2023, 3(3): 953.
[68]
Yu Z A, Rudnicki P E, Zhang Z W, Huang Z J, Celik H, Oyakhire S T, Chen Y L, Kong X, Kim S C, Xiao X, Wang H S, Zheng Y, Kamat G A, Kim M S, Bent S F, Qin J, Cui Y, Bao Z N. Nat. Energy., 2022, 7(1): 94.
[69]
Wu L Q, Li Z, Fan Z Y, Li K, Li J, Huang D B, Li A J, Yang Y, Xie W W, Zhao Q. J. Am. Chem. Soc., 2024, 146(9): 5964.
[70]
Xia L, Chen M M, Wang F, Miao H, Yuan J L. J. Power Sources, 2022, 526: 231152.
[71]
Holoubek J, Yu M Y, Yu S C, Li M Q, Wu Z H, Xia D W, Bhaladhare P, Gonzalez M S, Pascal T A, Liu P, Chen Z. ACS Energy Lett., 2020, 5(5): 1438.
[72]
Mo Y B, Liu G P, Yin Y, Tao M M, Chen J W, Peng Y, Wang Y G, Yang Y, Wang C X, Dong X L, Xia Y Y. Adv. Energy Mater., 2023, 13(32): 2301285.
[73]
Yang Y, Lu J J, Ni W J, Peng D, Chen W L, Fu Y P, Wang J L. Adv. Funct. Mater., 2025, 2300502.
[74]
Piao Z H, Wu X R, Ren H R, Lu G X, Gao R H, Zhou G M, Cheng H M. J. Am. Chem. Soc., 2023, 145(44): 24260.
[75]
Li Y Q, Liu M Z, Wang K, Li C F, Lu Y, Choudhary A, Ottley T, Bedrov D, Xing L D, Li W S. Adv. Energy Mater., 2023, 13(30): 2300918.
[76]
Chen L, Zhang H K, Li R H, Zhang S Q, Zhou T, Ma B C, Zhu C N, Xiao X Z, Deng T, Chen L X, Fan X L. Chem, 2024, 10(4): 1196.
[77]
Zhou X, Peng D, Deng K Q, Chen H Z, Zhou H, Wang J L. J.Power Sources., 2023, 557: 232557.
[78]
Lu J J, Peng D, Yang Y, Ni W J, Chen W L, Fu Y P, Wang J L.. ACS.Sustain.Chem.Eng., 2024, 12: 13500
[79]
Zhou X, Kozdra M, Ran Q, Deng K Q, Zhou H, Brandell D, Wang J L. Nanoscale., 2022, 14(46): 17237..
[80]
Yu L H, Wang J R, Xu Z J. Small Struct., 2021, 2(1): 2000043.
[81]
Liu H, Li T, Xu X Q, Shi P, Zhang X Q, Xu R, Cheng X B, Huang J Q. Chin. J. Chem. Eng., 2021, 37: 152.
[82]
Sun H R, DiMagno S G. J. Am. Chem. Soc., 2005, 127(7): 2050.
[83]
Kagan B D, Lichtscheidl A G, Erickson K A, Monreal M J, Scott B L, Nelson A T, Kiplinger J L. Eur. J. Inorg. Chem., 2018, 2018(11): 1247.
[84]
Qin T, Yang H Y, Wang L, Xue W R, Yao N, Li Q, Chen X, Yang X K, Yu X Q, Zhang Q, Li H. Angew. Chem. Int. Ed., 2024, 136(37): e202408902.

Funding

National Natural Science Foundation of China(22472051)
Natural Science Foundation of Hunan Province of China(2024JJ7180)
Project of Yuelushan Center for Industrial Innovation(2023YCII0108)

Accesses

Citation

Detail

Sections
Recommended

/