Reversible Chemical Modification Strategies and Applications in Protein Chemical Synthesis

Ling Xu, Tingting Cui, Yiming Li

Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 882-902.

Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Prog Chem ›› 2025, Vol. 37 ›› Issue (6) : 882-902. DOI: 10.7536/PC240818
Review

Reversible Chemical Modification Strategies and Applications in Protein Chemical Synthesis

Author information +
History +

Abstract

Protein chemical synthesis plays a crucial role in preparing proteins with specific sequences. Although this technology has been successfully applied to the synthesis of various proteins, the issues of solubility and refolding efficiency remain significant challenges for researchers when synthesizing hydrophobic and disulfide-rich proteins. The introduction of reversible chemical modification tags to the side chains or backbone of proteins offers an effective solution. Specifically, the introduction of solubilizing-tag during the protein synthesis process can significantly improve the water solubility of hydrophobic peptide segments, thereby facilitating subsequent protein synthesis and purification. The introduction of glycosylation modification effectively improves the folding of disulfide-rich proteins by stabilization of their folding intermediates. Moreover, these reversible modification tags can ultimately be removed by specific chemical or biological conditions, ensuring that the biological activity and structural integrity of the proteins are unaffected. This review delves into the types, introduction strategies and removal conditions of reversible modification tags and details their important applications in protein synthesis. These strategies not only expand the tools of protein chemical synthesis but also provide strong support for biomedical research and drug development, promising to drive further development in related fields.

Contents

1 Introduction

2 Reversible chemical modification strategies for synthesizing hydrophobic proteins

2.1 Introduction of reversible modification tags in peptide side chains

2.2 Peptide backbone modification

3 Reversible glycosylation modification strategies for the synthesis of difficult-to-fold proteins

4 Conclusion and outlook

Key words

protein chemical synthesis / hydrophobic proteins / disulfide-rich proteins / reversible chemical modification / solubilizing-tag

Cite this article

Download Citations
Ling Xu , Tingting Cui , Yiming Li. Reversible Chemical Modification Strategies and Applications in Protein Chemical Synthesis[J]. Progress in Chemistry. 2025, 37(6): 882-902 https://doi.org/10.7536/PC240818

References

[1]
Huang Y C, Fang G M, Liu L. Natl. Sci. Rev., 2016, 3(1): 107.
[2]
Wu X W, Du Y X, Liang L J, Ding R C, Zhang T Y, Cai H Y, Tian X L, Pan M, Liu L. Nat. Commun., 2024, 15: 1266.
[3]
Tong Z B, Ai H S, Xu Z Y, He K Z, Chu G C, Shi Q, Deng Z H, Xue Q M, Sun M S, Du Y X, Liang L J, Li J B, Pan M, Liu L. Nat. Struct. Mol. Biol., 2024, 31(2): 300.
[4]
Ai H S, Tong Z B, Deng Z H, Tian J K, Zhang L Y, Sun M S, Du Y X, Xu Z Y, Shi Q, Liang L J, Zheng Q Y, Li J B, Pan M, Liu L. Chem, 2023, 9(5): 1221.
[5]
Kent S B H. Chem. Soc. Rev., 2009, 38(2): 338.
[6]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.
[7]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.
[8]
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu J M, Melnyk O. Chem. Rev., 2019, 119(12): 7328.
[9]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.
[10]
Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51(41): 10347.
[11]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.
[12]
Deng Z H, Ai H S, Sun M S, Tong Z B, Du Y X, Qu Q, Zhang L Y, Xu Z Y, Tao S X, Shi Q, Li J B, Pan M, Liu L. Mol. Cell, 2023, 83(17): 3080.
[13]
Shin Y, Winans K A, Backes B J, Kent S B H, Ellman J A, Bertozzi C R. J. Am. Chem. Soc., 1999, 121(50): 11684.
[14]
Zhao J, Liu X L, Liu J L, Ye F R, Wei B C, Deng M G, Li T H, Huang P, Wang P. J. Am. Chem. Soc., 2024, 146(4): 2615.
[15]
Ye F R, Zhao J, Xu P, Liu X L, Yu J, Shangguan W, Liu J Z, Luo X S, Li C, Ying T L, Wang J, Yu B, Wang P. Angew. Chem. Int. Ed., 2021, 60(23): 12904.
[16]
Bondalapati S, Jbara M, Brik A. Nat. Chem., 2016, 8(5): 407.
[17]
Li Y T, Yi C, Chen C C, Lan H, Pan M, Zhang S J, Huang Y C, Guan C J, Li Y M, Yu L, Liu L. Nat. Commun., 2017, 8: 14846.
[18]
Thompson R E, Liu X Y, Alonso-García N, Pereira P J B, Jolliffe K A, Payne R J. J. Am. Chem. Soc., 2014, 136(23): 8161.
[19]
Pan M, Gao S, Zheng Y, Tan X D, Lan H, Tan X L, Sun D M, Lu L N, Wang T, Zheng Q Y, Huang Y C, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(23): 7429.
[20]
Gao S, Pan M, Zheng Y, Huang Y C, Zheng Q Y, Sun D M, Lu L N, Tan X D, Tan X L, Lan H, Wang J X, Wang T, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(43): 14497.
[21]
Tang S, Liang L J, Si Y Y, Gao S, Wang J X, Liang J, Mei Z Q, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2017, 56(43): 13333.
[22]
Marcaurelle L A, Mizoue L S, Wilken J, Oldham L, Kent S B H, Handel T M, Bertozzi C R. Chemistry, 2001, 7(5): 1129.
[23]
Warren J D, Miller J S, Keding S J, Danishefsky S J. J. Am. Chem. Soc., 2004, 126(21): 6576.
[24]
Ai H S, Peng S, Li J B. J. Pep. Sci., 2022, 28(5): e3381.
[25]
Yamamoto N, Tanabe Y, Okamoto R, Dawson P E, Kajihara Y. J. Am. Chem. Soc., 2008, 130(2): 501.
[26]
Ai H S, Sun M S, Liu A J, Sun Z X, Liu T T, Cao L, Liang L J, Qu Q, Li Z C, Deng Z H, Tong Z B, Chu G C, Tian X L, Deng H T, Zhao S W, Li J B, Lou Z Y, Liu L. Nat. Chem. Biol., 2022, 18(9): 972.
[27]
Pan M, Zheng Q Y, Wang T, Liang L J, Mao J X, Zuo C, Ding R C, Ai H S, Xie Y, Si D, Yu Y Y, Liu L, Zhao M L. Nature, 2021, 600(7888): 334.
[28]
Ai H S, Pan M, Liu L. ACS Cent. Sci., 2024, 10(8): 1442.
[29]
Chu G C, Liang L J, Zhao R, Guo Y Y, Li C T, Zuo C, Ai H S, Hua X, Li Z C, Li Y M, Liu L. CCS Chem., 2024, 6(8): 2031.
[30]
Liang L J, Chu G C, Qu Q, Zuo C, Mao J X, Zheng Q Y, Chen J N, Meng X B, Jing Y, Deng H T, Li Y M, Liu L. Angew. Chem. Int. Ed., 2021, 60(31): 17171.
[31]
Xu L, Fan J, Wang Y, Zhang Z P, Fu Y, Li Y M, Shi J. Chem. Commun., 2019, 55(49): 7109.
[32]
Zuo C, Shi W W, Chen X X, Glatz M, Riedl B, Flamme I, Pook E, Wang J W, Fang G M, Bierer D, Liu L. Sci. China Chem., 2019, 62(10): 1371.
[33]
Yeo D S Y, Srinivasan R, Uttamchandani M, Chen G Y J, Zhu Q, Yao S Q. Chem. Commun., 2003(23): 2870.
[34]
Chang H N, Liu B Y, Qi Y K, Zhou Y, Chen Y P, Pan K M, Li W W, Zhou X M, Ma W W, Fu C Y, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2015, 54(40): 11760.
[35]
Zhang L, Shen H, Gong Y Y, Pang X J, Yi M Q, Guo L, Li J, Arroyo S, Lu X, Ovchinnikov S, Cheng G, Liu X D, Jiang X, Feng S, Deng H T. Chem. Sci., 2019, 10(11): 3271.
[36]
Tam J P, Lu Y A, Yang J L, Chiu K W. Proc. Natl. Acad. Sci. U. S. A., 1999, 96(16): 8913.
[37]
Zhao R, Shi P, Wei X X, Xia Z M, Shi C W, Shi J. Org. Lett., 2023, 25(35): 6544.
[38]
Premdjee B, Andersen A S, Larance M, Conde-Frieboes K W, Payne R J. J. Am. Chem. Soc., 2021, 143(14): 5336.
[39]
Wang J X, Fang G M, He Y, Qu D L, Yu M, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2015, 54(7): 2194.
[40]
Levinson A M, McGee J H, Roberts A G, Creech G S, Wang T, Peterson M T, Hendrickson R C, Verdine G L, Danishefsky S J. J. Am. Chem. Soc., 2017, 139(22): 7632.
[41]
Bunker R D, Mandal K, Bashiri G, Chaston J J, Pentelute B L, Lott J S, Kent S B H, Baker E N. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(14): 4310.
[42]
Mandal K, Uppalapati M, Ault-Riché D, Kenney J, Lowitz J, Sidhu S S, Kent S B H. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(37): 14779.
[43]
Wang Z M, Xu W L, Liu L, Zhu T F. Nat. Chem., 2016, 8(7): 698.
[44]
Pech A, Achenbach J, Jahnz M, Schülzchen S, Jarosch F, Bordusa F, Klussmann S. Nucleic Acids Res., 2017, 45(7): 3997.
[45]
Jiang W J, Zhang B C, Fan C Y, Wang M, Wang J X, Deng Q, Liu X Y, Chen J, Zheng J S, Liu L, Zhu T F. Cell Discov., 2017, 3: 17037.
[46]
Zhou X M, Zuo C, Li W Q, Shi W W, Zhou X W, Wang H F, Chen S M, Du J F, Chen G Y, Zhai W J, Zhao W S, Wu Y H, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2020, 59(35): 15114.
[47]
Qi Y K, Zheng J S, Liu L. Chem., 2024, 10(8): 2390.
[48]
van de Langemheen H, van Hoeke M, Quarles van Ufford H C, Kruijtzer J A W, Liskamp R M J. Org. Biomol. Chem., 2014, 12(25): 4471.
[49]
Yim V V, Kavianinia I, Cameron A J, Harris P W R, Brimble M A. Org. Biomol. Chem., 2020, 18(15): 2838.
[50]
Chaudhuri D, Ganesan R, Vogelaar A, Dughbaj M A, Beringer P M, Camarero J A. J. Org. Chem., 2021, 86(21): 15242.
[51]
Wierzbicka M, Waliczek M, Dziadecka A, Stefanowicz P. J. Org. Chem., 2021, 86(17): 12292.
[52]
Camarero J A, Muir T W. Chem. Commun., 1997(15): 1369.
[53]
Tam J P, Lu Y A. Tetrahedron Lett., 1997, 38(32): 5599.
[54]
Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136(9): 3695.
[55]
Kochendoerfer G G, Salom D, Lear J D, Wilk-Orescan R, Kent S B H, DeGrado W F. Biochemistry, 1999, 38(37): 11905.
[56]
Bode J W. Acc. Chem. Res., 2017, 50(9): 2104.
[57]
Pusterla I, Bode J W. Nat. Chem., 2015, 7(8): 668.
[58]
Pusterla I, Bode J W. Angew. Chem. Int. Ed., 2012, 51(2): 513.
[59]
Zhang Y F, Xu C, Lam H Y, Lee C L, Li X C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(17): 6657.
[60]
Liu H, Li X C. Acc. Chem. Res., 2018, 51(7): 1643.
[61]
Wu H X, Zhang Y W, Li Y X, Xu J C, Wang Y, Li X C. J. Am. Chem. Soc., 2021, 143(20): 7808.
[62]
Li X C, Lam H Y, Zhang Y F, Chan C K. Org. Lett., 2010, 12(8): 1724.
[63]
Lee C L, Li X C. Curr. Opin. Chem. Biol., 2014, 22: 108.
[64]
Ma W, Wu H X, Liu S, Wei T Y, Li X D, Liu H, Li X C. Angew. Chem. Int. Ed., 2023, 135(1): e202214053.
[65]
Tan Y, Li J S, Jin K, Liu J M, Chen Z Y, Yang J, Li X C. Angew. Chem. Int. Ed., 2020, 59(31): 12741.
[66]
Mitchell N J, Malins L R, Liu X Y, Thompson R E, Chan B, Radom L, Payne R J. J. Am. Chem. Soc., 2015, 137(44): 14011.
[67]
Sayers J, Karpati P M T, Mitchell N J, Goldys A M, Kwong S M, Firth N, Chan B, Payne R J. J. Am. Chem. Soc., 2018, 140(41): 13327.
[68]
Chisholm T S, Kulkarni S S, Hossain K R, Cornelius F, Clarke R J, Payne R J. J. Am. Chem. Soc., 2020, 142(2): 1090.
[69]
Liu J, Chen Q Q, Rozovsky S. J. Am. Chem. Soc., 2017, 139(9): 3430.
[70]
Pishesha N, Ingram J R, Ploegh H L. Annu. Rev. Cell Dev. Biol., 2018, 34: 163.
[71]
Nguyen G K T, Wang S J, Qiu Y B, Hemu X Y, Lian Y L, Tam J P. Nat. Chem. Biol., 2014, 10(9): 732.
[72]
Thompson R E, Muir T W. Chem. Rev., 2020, 120(6): 3051.
[73]
Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53(8): 2198.
[74]
Tolbert T J, Wong C H. Angew. Chem. Int. Ed., 2002, 41(12): 2171.
[75]
Muir T W, Sondhi D, Cole P A. Proc. Natl. Acad. Sci. U. S. A., 1998, 95(12): 6705.
[76]
Adams A L, Cowper B, Morgan R E, Premdjee B, Caddick S, MacMillan D. Angew. Chem. Int. Ed., 2013, 52(49): 13062.
[77]
Paradís-Bas M, Tulla-Puche J, Albericio F. Chem. Soc. Rev., 2016, 45(3): 631.
[78]
Gluhacevic von Krüchten D, Roth M, Seitz O. J. Am. Chem. Soc., 2022, 144(24): 10700.
[79]
Gavins G C, Gröger K, Bartoschek M D, Wolf P, Beck-Sickinger A G, Bultmann S, Seitz O. Nat. Chem., 2021, 13(1): 15.
[80]
Sayers J, Payne R J, Winssinger N. Chem. Sci., 2018, 9(4): 896.
[81]
Dittmann M, Sauermann J, Seidel R, Zimmermann W, Engelhard M. J. Pept. Sci., 2010, 16(10): 558.
[82]
Dittmann M, Seidel R, Chizhov I, Engelhard M. J. Pept. Sci., 2014, 20(2): 137.
[83]
Shen F, Tang S, Liu L. Sci. China Chem., 2011, 54(1): 110.
[84]
Bianchi E, Ingenito R, Simon R J, Pessi A. J. Am. Chem. Soc., 1999, 121(33): 7698.
[85]
Kochendoerfer G G, Jones D H, Lee S, Oblatt-Montal M, Opella S J, Montal M. J. Am. Chem. Soc., 2004, 126(8): 2439.
[86]
Clayton D, Shapovalov G, Maurer J A, Dougherty D A, Lester H A, Kochendoerfer G G. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(14): 4764.
[87]
Liu L-P, Deber C M. Biopolymers, 1998, 47(1): 41.
[88]
Paradís-Bas M, Tulla-Puche J, Albericio F. Org. Lett., 2015, 17(2): 294.
[89]
Tan Z P, Shang S Y, Danishefsky S J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(11): 4297.
[90]
Sato T, Saito Y, Aimoto S. J. Peptide Sci., 2005, 11(7): 410.
[91]
Johnson E C B, Kent S B H. Tetrahedron Lett., 2007, 48(10): 1795.
[92]
Harris P, Brimble M. Synthesis, 2009, 2009(20): 3460.
[93]
Harris P W R, Brimble M A. Pept. Sci., 2010, 94(4): 542.
[94]
Baumruck A C, Tietze D, Steinacker L K, Tietze A A. Chem. Sci., 2018, 9(8): 2365.
[95]
Johnson E C B, Malito E, Shen Y Q, Rich D, Tang W J, Kent S B H. J. Am. Chem. Soc., 2007, 129(37): 11480.
[96]
Liu J M, Wei T Y, Tan Y, Liu H, Li X C. Chem. Sci., 2022, 13(5): 1367.
[97]
Tanaka S, Narumi T, Mase N, Sato K. Chem. Pharm. Bull., 2022, 70(10): 707.
[98]
Linn K M, Derebe M G, Jiang Y X, Valiyaveetil F I. Biochemistry, 2010, 49(21): 4450.
[99]
Abboud S A, Cisse E H, Doudeau M, Bénédetti H, Aucagne V. Chem. Sci., 2021, 12(9): 3194.
[100]
Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52(18): 4858.
[101]
Maity S K, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Org. Lett., 2016, 18(12): 3026.
[102]
Brailsford J A, Stockdill J L, Axelrod A J, Peterson M T, Vadola P A, Johnston E V, Danishefsky S J. Tetrahedron, 2018, 74(15): 1951.
[103]
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Angew. Chem. Int. Ed., 2018, 57(8): 2105.
[104]
Tsuda S, Masuda S, Yoshiya T. Org. Biomol. Chem., 2019, 17(5): 1202.
[105]
Yoshiya T, Tsuda S, Masuda S. ChemBioChem, 2019, 20(15): 1906.
[106]
Masuda S, Tsuda S, Yoshiya T. Org. Biomol. Chem., 2019, 17(48): 10228.
[107]
Wan Q, Danishefsky S. Angew. Chem. Int. Ed., 2007, 46(48): 9248.
[108]
Hojo H, Aimoto S. Bull. Chem. Soc. Jpn., 1991, 64(1): 111.
[109]
Hojo H. Org. Biomol. Chem., 2016, 14(27): 6368.
[110]
Tsuda S, Nishio H, Yoshiya T. Chem. Commun., 2018, 54(64): 8861.
[111]
Jacobsen M T, Petersen M E, Ye X, Galibert M, Lorimer G H, Aucagne V, Kay M S. J. Am. Chem. Soc., 2016, 138(36): 11775.
[112]
Fulcher J M, Petersen M E, Giesler R J, Cruz Z S, Eckert D M, Francis J N, Kawamoto E M, Jacobsen M T, Kay M S. Org. Biomol. Chem., 2019, 17(48): 10237.
[113]
Zheng Y P, Zhang B C, Shi W W, Deng X Y, Wang T Y, Han D Y, Ren Y X, Yang Z Y, Zhou Y K, Kuang J, Wang Z W, Tang S, Zheng J S. Angew. Chem. Int. Ed., 2024, 63(14): e202318897.
[114]
Tsuda S, Masuda S, Yoshiya T. ChemBioChem, 2019, 20(16): 2063.
[115]
Johnson T, Quibell M, Owen D, Sheppard R C. J. Chem. Soc. Chem. Commun., 1993, (4): 369.
[116]
Quibell M, Turnell W G, Johnson T. J. Org. Chem., 1994, 59(7): 1745.
[117]
Qi Y K, Tang S, Huang Y C, Pan M, Zheng J S, Liu L. Org. Biomol. Chem., 2016, 14(18): 4194.
[118]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.
[119]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.
[120]
Li Y, Wang L J, Zhou Y K, Liang J, Xiao B, Zheng J S. Chin. Chem. Lett., 2024, 35(5): 109033.
[121]
Huang D L, Guo W C, Shi W W, Gao Y P, Zhou Y K, Wang L J, Wang C, Tang S, Liu L, Zheng J S. Sci. Adv., 2024, 10(29): eado9413.
[122]
Hunter C L, Kochendoerfer G G. Bioconjugate Chem., 2004, 15(3): 437.
[123]
Zuo C, Tang S, Si Y Y, Wang Z A, Tian C L, Zheng J S. Org. Biomol. Chem., 2016, 14(22): 5012.
[124]
Jiang H, Zhang X Y, Chen X, Aramsangtienchai P, Tong Z, Lin H N. Chem. Rev., 2018, 118(3): 919.
[125]
Huang D L, Montigny C, Zheng Y, Beswick V, Li Y, Cao X X, Barbot T, Jaxel C, Liang J, Xue M, Tian C L, Jamin N, Zheng J S. Angew. Chem. Int. Ed., 2020, 59(13): 5178.
[126]
Huang D L, Li Y, Liang J, Yu L, Xue M, Cao X X, Xiao B, Tian C L, Liu L, Zheng J S. J. Am. Chem. Soc., 2020, 142(19): 8790.
[127]
Zhang B C, Zheng Y P, Chu G C, Deng X Y, Wang T Y, Shi W W, Zhou Y K, Tang S, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2023, 62(33): e202306270.
[128]
Wu H X, Wei T Y, Ngai W L, Zhou H Y, Li X C. J. Am. Chem. Soc., 2022, 144(32): 14748.
[129]
Wu H X, Tan Y, Ngai W L, Li X C. Chem. Sci., 2023, 14(6): 1582.
[130]
Wu H X, Sun Z, Li X C. Angew. Chem. Int. Ed., 2023, 62(44):e202310624.
[131]
Boyman O, Sprent J. Nat. Rev. Immunol., 2012, 12(3): 180.
[132]
Paradís-Bas M, Tulla-Puche J, Albericio F. Chem., 2014, 20(46): 15031.
[133]
Dobson C M. Nature, 2003, 426(6968): 884.
[134]
Ottl J, Moroder L. J. Am. Chem. Soc., 1999, 121(4): 653.
[135]
Akaji K, Fujino K, Tatsumi T, Kiso Y. J. Am. Chem. Soc., 1993, 115(24): 11384.
[136]
He R J, Pan J, Mayer J P, Liu F. ChemBioChem, 2020, 21(8): 1101.
[137]
Szabó I, Schlosser G, Hudecz F, Mező G. Pept. Sci., 2007, 88(1): 20.
[138]
Guo Y, Sun D M, Wang F L, He Y, Liu L, Tian C L. Angew. Chem. Int. Ed., 2015, 54(48): 14276.
[139]
Qu Q, Gao S, Wu F M, Zhang M G, Li Y, Zhang L H, Bierer D, Tian C L, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2020, 59(15): 6037.
[140]
Qi Y K, Qu Q, Bierer D, Liu L. Chem., 2020, 15(18): 2793.
[141]
Cui J B, Wei X X, Zhao R, Zhu H X, Shi J, Bierer D, Li Y M. Org. Biomol. Chem., 2021, 19(41): 9021.
[142]
Tang J H, Yuan R J, Luo J, Wang N, Wang J, Li Y M. Org. Lett., 2023, 25(16): 2939.
[143]
Sun S S, Chen J Y, Zhao R, Bierer D, Wang J, Fang G M, Li Y M. Tetrahedron Lett., 2019, 60(17): 1197.
[144]
Xu Y, Wang T, Guan C J, Li Y M, Liu L, Shi J, Bierer D. Tetrahedron Lett., 2017, 58(17): 1677.
[145]
Wang T, Fan J, Chen X X, Zhao R, Xu Y, Bierer D, Liu L, Li Y M, Shi J, Fang G M. Org. Lett., 2018, 20(19): 6074.
[146]
Liu C, Zou Y, Hu H G, Jiang Y Y, Qin L P. RSC Adv., 2019, 9(10): 5438.
[147]
Wang T, Kong Y F, Xu Y, Fan J, Xu H J, Bierer D, Wang J, Shi J, Li Y M. Tetrahedron Lett., 2017, 58(42): 3970.
[148]
Chen J Y, Sun S S, Zhao R, Xi C P, Qiu W J, Wang N, Wang Y, Bierer D, Shi J, Li Y M. ChemistrySelect, 2020, 5(4): 1359.
[149]
Huang D L, Bai J S, Wu M, Wang X, Riedl B, Pook E, Alt C, Erny M, Li Y M, Bierer D, Shi J, Fang G M. Chem. Commun., 2019, 55(19): 2821.
[150]
Laps S, Atamleh F, Kamnesky G, Sun H, Brik A. Nat. Commun., 2021, 12(1): 870.
[151]
Weinstock M T, Jacobsen M T, Kay M S. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(32): 11679.
[152]
Girelli D, Nemeth E, Swinkels D W. Blood, 2016, 127(23): 2809.
[153]
Jordan J B, Poppe L, Haniu M, Arvedson T, Syed R, Li V, Kohno H, Kim H, Schnier P D, Harvey T S, Miranda L P, Cheetham J, Sasu B J. J. Biol. Chem., 2009, 284(36): 24155.
[154]
Proudfoot A I, Fattah D, Kawashima E H, Bernard A, Wingfield P T. Biochem. J., 1990, 270(2): 357.
[155]
Liu J R, Dong S W. Chin. Chemical Lett., 2018, 29(7): 1131.
[156]
Shi W W, Shi C W, Wang T Y, Li Y L, Zhou Y K, Zhang X H, Bierer D, Zheng J S, Liu L. J. Am. Chem. Soc., 2022, 144(1): 349.
[157]
Shi W W, Wang T Y, Yang Z Y, Ren Y X, Han D Y, Zheng Y P, Deng X Y, Tang S, Zheng J S. Angew. Chem. Int. Ed., 2024, 63(9): e202313640.
[158]
Olschewski D, Becker C F W. Mol. BioSyst., 2008, 4(7): 733.
[159]
Harrison K, MacKay A S, Kambanis L, Maxwell J W C, Payne R J. Nat. Rev. Chem., 2023, 7(6): 383.
[160]
Li Z C, Zhang B C, Zuo C, Liu L. Chin. J. Org. Chem., 2018, 38(9): 2412.
[161]
Conibear A C. Nat. Rev. Chem., 2020, 4(12): 674.
[162]
Wang Z P, Wang Y H, Chu G C, Shi J, Li Y M. Curr. Org. Synth., 2015, 12(2): 150.
[163]
Mezzato S, Schaffrath M, Unverzagt C. Angew. Chem. Int. Ed., 2005, 44(11): 1650.
[164]
Tan X L, Pan M, Zheng Y, Gao S, Liang L J, Li Y M. Chem. Sci., 2017, 8(10): 6881.
[165]
Pan M, Zheng Q Y, Ding S, Zhang L J, Qu Q, Wang T, Hong D N, Ren Y J, Liang L J, Chen C L, Mei Z Q, Liu L. Angew. Chem. Int. Ed., 2019, 58(9): 2627.
[166]
Chu G C, Pan M, Li J B, Liu S L, Zuo C, Tong Z B, Bai J S, Gong Q Y, Ai H S, Fan J, Meng X B, Huang Y C, Shi J, Deng H T, Tian C L, Li Y M, Liu L. J. Am. Chem. Soc., 2019, 141(8): 3654.
[167]
Ai H S, Guo Y, Sun D M, Liu S L, Qi Y K, Guo J, Qu Q, Gong Q Y, Zhao S W, Li J B, Liu L. ChemBioChem, 2019, 20(2): 221.
[168]
Dong S W, Zheng J S, Li Y M, Wang H, Chen G, Chen Y X, Fang G M, Guo J, He C M, Hu H G, Li X C, Li Y M, Li Z G, Pan M, Tang S, Tian C L, Wang P, Wu B, Wu C L, Zhao J F, Liu L. Sci. China Chem., 2024, 67(4): 1060.
[169]
Shi Q, Deng Z H, Zhang L Y, Tong Z B, Li J B, Chu G C, Ai H S, Liu L. Angew. Chem. Int. Ed., 2025, 64(1): e202413651.

Funding

National Natural Science Foundation of China(22277020)
National Natural Science Foundation of China(22227810)
National Natural Science Foundation of China(22207001)
Natural Science Foundation of Anhui Province(2208085QC74)

Accesses

Citation

Detail

Sections
Recommended

/