Flexible Pressure Sensor Based on Polydimethylsiloxane

Guang Yang, Demei Yu

Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 536-550.

PDF(7230 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7230 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (4) : 536-550. DOI: 10.7536/PC241001
Review

Flexible Pressure Sensor Based on Polydimethylsiloxane

Author information +
History +

Abstract

With the advancement of technology,flexible pressure sensors have been widely utilized in wearable device fields such as medical monitoring and motion monitoring,primarily due to their thinness,lightness,flexibility,good ductility,as well as their faster response speed and higher sensitivity compared to traditional rigid sensors. When subjected to external forces,the elastic elements within these sensors undergo deformation,converting mechanical signals into electrical signals. Consequently,the choice of elastic elements significantly impacts the overall performance of flexible pressure sensors. Polydimethylsiloxane (PDMS) is extensively used as a flexible substrate in sensors because of its stable chemical properties,good thermal stability,low preparation cost,and excellent biocompatibility. By collecting relevant information,this paper reviews the sensing mechanisms of PDMS-based flexible pressure sensors,introduces preparation techniques to improve the properties of PDMS materials,including the recently popular methods of introducing porous structures and constructing surface architectures,and discusses the applications of PDMS-based flexible pressure sensors in medical monitoring,electronic skin,and other fields. Finally,the challenges faced by PDMS-based flexible sensors and their future opportunities are prospected.

Contents

1 Introduction

2 Flexible pressure sensor

3 Fabrication technology of flexible sensor with improved performance

3.1 Pore structure

3.2 Surface micro-nano structures

4 Application of flexible pressure sensor based on PDMS

4.1 Health monitoring

4.2 Electronic skin

5 Conclusion and outlook

Key words

polydimethylsiloxane / flexible pressure sensor / pore structure / micro-nano structure

Cite this article

Download Citations
Guang Yang , Demei Yu. Flexible Pressure Sensor Based on Polydimethylsiloxane[J]. Progress in Chemistry. 2025, 37(4): 536-550 https://doi.org/10.7536/PC241001

References

[1]
Zhang J W, Zhang Y, Li Y Y, Ye X, Wang P, Xu Y K. ACS Appl. Electron. Mater., 2021, 3(7): 3177.
[2]
Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R. ACS Appl. Mater. Interfaces, 2020, 12(8): 9008.
[3]
Ha K H, Zhang W Y, Jang H, Kang S, Wang L, Tan P, Hwang H, Lu N S. Adv. Mater., 2021, 33(48): 2103320.
[4]
Hu Y F, Zheng Z J. Nano Energy, 2019, 56: 16.
[5]
Liu Z Y, Wang H, Huang P G, Huang J P, Zhang Y, Wang Y Y, Yu M, Chen S X, Qi D P, Wang T, Jiang Y, Chen G, Hu G Y, Li W L, Yu J C, Luo Y F, Loh X J, Liedberg B, Li G L, Chen X D. Adv. Mater., 2019, 31(35): 1901360.
[6]
Bartlett M D, Dickey M D, Majidi C. NPG Asia Mater., 2019, 11: 21.
[7]
Kang J, Tok J B, Bao Z N. Nat. Electron., 2019, 2(4): 144.
[8]
Tang X, Wu C Y, Gan L, Zhang T, Zhou T T, Huang J, Wang H, Xie C S, Zeng D W. Small, 2019, 15(10): 1804559.
[9]
Dan L, Shi S, Chung H J, Elias A. ACS Appl. Nano Mater., 2019, 2(8): 4869.
[10]
Gao J, Zhao B, Chen X, Gu M, Zhang W, Wang L, Wei L, Yang C, Chen M. Small, 2024, 19: 5772.
[11]
Gu M X, Zhao B Z, Gao J X, Zhou X, Huang L C, Wang J H, Wei L, Yang C L, Chen M. Adv. Funct. Mater., 2024, 34(33): 2400494.
[12]
He C Y, Wu L, Gu G Q, Wei L, Yang C L, Chen M. Nano Lett., 2024, 24(23): 7040.
[13]
Hou Y X, Wang L, Sun R, Zhang Y A, Gu M X, Zhu Y H, Tong Y B, Liu X Y, Wang Z X, Xia J, Hu Y G, Wei L, Yang C L, Chen M. ACS Nano, 2022, 16(5): 8358.
[14]
Wang Z R, Wang S, Zeng J F, Ren X C, Chee A J Y, Yiu B Y S, Chung W C, Yang Y, Yu A C H, Roberts R C, Tsang A C O, Chow K W, Chan P K L. Small, 2016, 12(28): 3827.
[15]
Zhu Y S, Cai H B, Ding H Y, Pan N, Wang X P. ACS Appl. Mater. Interfaces, 2019, 11(6): 6195.
[16]
Li H W, Wu K J, Xu Z Y, Wang Z W, Meng Y C, Li L Q. ACS Appl. Mater. Interfaces, 2018, 10(24): 20826.
[17]
Ha M, Lim S, Cho S, Lee Y, Na S Y, Baig C, Ko H. ACS Nano, 2018, 12(4): 3964.
[18]
Dalla Monta A, Razan F, Le Cam J B, Chagnon G. Sens. Actuat. A Phys., 2018, 280: 107.
[19]
Giri R, Naskar K, Nando G B. Radiat. Phys. Chem., 2012, 81(12): 1930.
[20]
Montazerian H, Mohamed M G A, Montazeri M M, Kheiri S, Milani A S, Kim K, Hoorfar M. Acta Biomater., 2019, 96: 149.
[21]
Shi Y L, Hu M, Xing Y F, Li Y H. Mater. Des., 2020, 185: 108219.
[22]
Chen X D. Small Meth., 2017, 1(4): 1600029.
[23]
Xu S, Zhang Y H, Jia L, Mathewson K E, Jang K I, Kim J, Fu H R, Huang X, Chava P, Wang R H, Bhole S, Wang L Z, Na Y J, Guan Y, Flavin M, Han Z S, Huang Y G, Rogers J A. Science, 2014, 344(6179): 70.
[24]
Mishra S, Mohanty S, Ramadoss A. ACS Sens., 2022, 7(9): 2495.
[25]
Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A. Nat. Mater., 2010, 9(10): 821.
[26]
Shi M Y, Zhang J X, Chen H T, Han M D, Shankaregowda S A, Su Z M, Meng B, Cheng X L, Zhang H X. ACS Nano, 2016, 10(4): 4083.
[27]
Park S, Kim H, Vosgueritchian M, Cheon S, Kim H, Koo J H, Kim T R, Lee S, Schwartz G, Chang H, Bao Z N. Adv. Mater., 2014, 26(43): 7324.
[28]
Wang J L, Lu C H, Zhang K. Energy Environ. Mater., 2020, 3(1): 80.
[29]
Wang C, Hwang D, Yu Z B, Takei K, Park J, Chen T, Ma B W, Javey A. Nat. Mater., 2013, 12(10): 899.
[30]
Gao Q, Cheng T H, Wang Z L. Extreme Mech. Lett., 2021, 42: 101100.
[31]
Zhan J, Wang Z Y, Mo L X, Meng X Y, Li L H, Peng Z C. Prog. Chem., 2022, 34(10): 2202.
( (赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 化学进展, 2022, 34(10): 2202.)
[32]
Gong S, Schwalb W, Wang Y W, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W L. Nat. Commun., 2014, 5: 3132.
[33]
Shuai X T, Zhu P L, Zeng W J, Hu Y G, Liang X W, Zhang Y, Sun R, Wong C P. ACS Appl. Mater. Interfaces, 2017, 9(31): 26314.
[34]
Kim J, Lee M, Shim H J, Ghaffari R, Cho H R, Son D, Jung Y H, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S T, Kim J H, Choi S H, Hyeon T, Kim D H. Nat. Commun., 2014, 5: 5747.
[35]
Wan S, Bi H C, Zhou Y L, Xie X, Su S, Yin K B, Sun L T. Carbon, 2017, 114: 209.
[36]
Sarwar M S, Dobashi Y, Preston C, Wyss J K M, Mirabbasi S, Madden J D W. Sci. Adv., 2017, 3(3): e1602200.
[37]
Kim H, Kim G, Kim T, Lee S, Kang D, Hwang M S, Chae Y, Kang S, Lee H, Park H G, Shim W. Small, 2018, 14(8): 1703432.
[38]
He Z Z, Gao B B, Li T, Liao J L, Liu B, Liu X J, Wang C Y, Feng Z Q, Gu Z Z. ACS Sustainable Chem. Eng., 2019, 7(1): 1745.
[39]
Sultana A, Alam M M, Garain S, Sinha T K, Middya T R, Mandal D. ACS Appl. Mater. Interfaces, 2015, 7(34): 19091.
[40]
Fan F R, Tian Z Q, Wang Z L. Nano Energy, 2012, 1(2): 328.
[41]
Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L. Adv. Mater., 2014, 26(17): 2659.
[42]
Das S, Heasman P, Ben T, Qiu S L. Chem. Rev., 2017, 117(3): 1515.
[43]
Slater A G, Cooper A I. Science, 2015, 348(6238): aaa8075.
[44]
Ozkan E, Garren M, Manuel J, Douglass M, Devine R, Mondal A, Kumar A, Ashcraft M, Pandey R, Handa H. ACS Appl. Mater. Interfaces, 2023, 15(5): 7610.
[45]
Guo B F, Wang P H, Cao C F, Qu Z H, Lv L Y, Zhang G D, Gong L X, Song P G, Gao J F, Mai Y W, Tang L C. Compos. Part B Eng., 2022, 247: 110290.
[46]
Yu C L, Yu C M, Cui L Y, Song Z Y, Zhao X Y, Ma Y, Jiang L. Adv. Mater. Interfaces, 2017, 4(3): 1600862.
[47]
Hinton T J, Hudson A, Pusch K, Lee A, Feinberg A W. ACS Biomater. Sci. Eng., 2016, 2(10): 1781.
[48]
Woo R, Chen G, Zhao J Y, Bae J. ACS Appl. Polym. Mater., 2021, 3(7): 3496.
[49]
Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C. ACS Appl. Mater. Interface, 2016, 8(3): 2187.
[50]
Oropallo W, Piegl L A. Eng. Comput., 2016, 32(1): 135.
[51]
Ishigami T, Nii Y, Ohmukai Y, Rajabzadeh S, Matsuyama H. Membranes, 2014, 4(1): 113.
[52]
Ulbricht M. Polymer, 2006, 47(7): 2217.
[53]
Kim J K, Taki K, Ohshima M. Langmuir, 2007, 23(24): 12397.
[54]
Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H. Adv. Mater., 2014, 26(28): 4825.
[55]
Abshirini M, Saha M C, Altan M C, Liu Y T, Cummings L, Robison T. J. Appl. Polym. Sci., 2021, 138(29): 50688.
[56]
Lee H, Yoo J K, Park J H, Kim J H, Kang K, Jung Y S. Adv. Energy Mater., 2012, 2(8): 976.
[57]
Keller A, Zainulabdeen K, Warren H, in het Panhuis M. MRS Adv., 2022, 7(23/24): 495.
[58]
McCall W R, Kim K, Heath C, La Pierre G, Sirbuly D J. ACS Appl. Mater. Interfaces, 2014, 6(22): 19504.
[59]
Stein A, Li F, Denny N R. Chem. Mater., 2008, 20(3): 649.
[60]
Zhao X, Li L X, Li B C, Zhang J P, Wang A Q. J. Mater. Chem. A, 2014, 2(43): 18281.
[61]
Liu W, Chen Z, Zhou G M, Sun Y M, Lee H R, Liu C, Yao H B, Bao Z N, Cui Y. Adv. Mater., 2016, 28(18): 3578.
[62]
Pharino U, Sinsanong Y, Pongampai S, Charoonsuk T, Pakawanit P, Sriphan S, Vittayakorn N, Vittayakorn W. Radiat. Phys. Chem., 2021, 189: 109720.
[63]
Zhang J M, Yang X B, Xu R Z, Li S S, Qi G G, Tan X Y. Mater. Lett., 2024, 357: 135686.
[64]
Wu M, Gao Z, Yao K, Hou S, Liu Y, Li D, He J, Huang X, Song E, Yu J, Yu X. Mater. Today Energy, 2021, 20: 100657.
[65]
Kang S B, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-Sayari S, Kim D E, Kim D, Lee T. Adv. Electron. Mater., 2016, 2(12): 1600356.
[66]
Calabrese L, Bonaccorsi L, Freni A, Proverbio E. Sustain. Mater. Technol., 2017, 12: 27.
[67]
Chruściel J J, Leśniak E. J. Appl. Polym. Sci., 2011, 119(3): 1696.
[68]
Long Y, Zhao X L, Jiang X, Zhang L, Zhang H, Liu Y, Zhu H W. FlatChem, 2018, 10: 1.
[69]
Cao C F, Wang P H, Zhang J W, Guo K Y, Li Y, Xia Q Q, Zhang G D, Zhao L, Chen H, Wang L, Gao J F, Song P, Tang L C. Chem. Eng. J., 2020, 393: 124724.
[70]
Zhao D S, Li Y W, Zhang Z D, Xu T, Ye C, Shi T Q, Wang Y T. Mater. Horiz., 2023, 10(4): 1121.
[71]
Qian L, Zhang H F. J. Chem. Technol. Biotechnol., 2011, 86(2): 172.
[72]
Feng Z P, He Q, Wang X, Lin Y G, Qiu J, Wu Y F, Yang J. ACS Appl. Mater. Interfaces, 2023, 15(4): 6217.
[73]
Chen M, Li K, Cheng G M, He K, Li W W, Zhang D S, Li W M, Feng Y, Wei L, Li W J, Zhong G H, Yang C L. ACS Appl. Mater. Interfaces, 2019, 11(2): 2551.
[74]
Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S W, Kim J J, Kim S Y, Ko H. NPG Asia Mater., 2018, 10(4): 163.
[75]
Wang Z H, Zhang L, Liu J, Jiang H, Li C Z. Nanoscale, 2018, 10(22): 10691.
[76]
Park H, Jeong Y R, Yun J, Hong S Y, Jin S, Lee S J, Zi G, Ha J S. ACS Nano, 2015, 9(10): 9974.
[77]
Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(12): 12020.
[78]
Trung T Q, Lee N E. Adv. Mater., 2016, 28(22): 4338.
[79]
Mannsfeld S C B, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z N. Nat. Mater., 2010, 9(10): 859.
[80]
Tee B C, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z N. Adv. Funct. Mater., 2014, 24(34): 5427.
[81]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv. Mater., 2014, 26(21): 3451.
[82]
Chung J Y, Nolte A J, Stafford C M. Adv. Mater., 2011, 23(3): 349.
[83]
Mu J K, Hou C Y, Wang G, Wang X M, Zhang Q H, Li Y G, Wang H Z, Zhu M F. Adv. Mater., 2016, 28(43): 9491.
[84]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y. Nat. Mater., 2012, 11(9): 795.
[85]
Chen X L, Shao J Y, Tian H M, Li X M, Wang C H, Luo Y S, Li S. Adv. Mater. Technol., 2020, 5(7): 2000046.
[86]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K. Adv. Mater., 2016, 28(26): 5300.
[87]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(5): 4689.
[88]
Wang J, Tenjimbayashi M, Tokura Y, Park J Y, Kawase K, Li J T, Shiratori S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30689.
[89]
Wang X L, Xia Z D, Zhao C, Huang P, Zhao S F, Gao M, Nie J K. Sens. Actuat. A Phys., 2020, 312: 112147.
[90]
Li T, Luo H, Qin L, Wang X W, Xiong Z P, Ding H Y, Gu Y, Liu Z, Zhang T. Small, 2016, 12(36): 5042.
[91]
Hu Y F, Huang T Q, Zhang H J, Lin H J, Zhang Y, Ke L W, Cao W, Hu K, Ding Y, Wang X Y, Rui K, Zhu J X, Huang W. ACS Appl. Mater. Interfaces, 2021, 13(20): 23905.
[92]
Bai S L, Zhang K W, Wang L S, Sun J H, Luo R X, Li D Q, Chen A F. J. Mater. Chem. A, 2014, 2(21): 7927.
[93]
Ji B, Zhou Q, Wu J B, Gao Y B, Wen W J, Zhou B P. ACS Appl. Mater. Interfaces, 2020, 12(27): 31021.
[94]
Shi L, Chu Z Y, Liu Y, Jin W Q, Xu N P. Adv. Funct. Mater., 2014, 24(44): 7032.
[95]
Xiong Y X, Hu Y G, Zhu P L, Sun R, Wang Z P. Prog. Chem., 2019, 31(6): 800.
(熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 化学进展, 2019, 31(6): 800.).
[96]
Ananthasubramanian P, Sahay R, Raghavan N. RSC Adv., 2024, 14(22): 15249.
[97]
Chen S, Song Y J, Xu F. ACS Appl. Mater. Interfaces, 2018, 10(40): 34646.
[98]
Park J, Lee Y, Ha M, Cho S, Ko H. J. Mater. Chem. B, 2016, 4(18): 2999.
[99]
Guo X L, Liu X, Hu H C, Hu C A. Light. Ind. Mach., 2023, 41(2): 34.
(郭鑫雷, 刘鑫, 胡汉春, 胡呈安. 轻工机械, 2023, 41(2): 34.).
[100]
Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B, Bao Z N. Adv. Mater., 2015, 27(4): 634.
[101]
Kim K, Jung M, Kim B, Kim J, Shin K, Kwon O S, Jeon S. Nano Energy, 2017, 41: 301.
[102]
Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F, Wang Z L. Nat. Commun., 2018, 9: 244.
[103]
Chen H T, Miao L M, Su Z M, Song Y, Han M D, Chen X X, Cheng X L, Chen D M, Zhang H X. Nano Energy, 2017, 40: 65.

Funding

Shaanxi Provincial Department of Science and Technology,General Project-Youth Project(2022JQ-485)
PDF(7230 KB)

Accesses

Citation

Detail

Sections
Recommended

/