The Photodissociation and Photoionization Dynamics of Some Important Small Molecules

Min Cheng, Lijuan Zhang, Xiling Xu, Hong Gao, Weijun Zheng

Prog Chem ›› 2024, Vol. 36 ›› Issue (12) : 1830-1848.

PDF(41462 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(41462 KB)
Prog Chem ›› 2024, Vol. 36 ›› Issue (12) : 1830-1848. DOI: 10.7536/PC241110
Chemistry: A Century of Life-Special Edition

The Photodissociation and Photoionization Dynamics of Some Important Small Molecules

Author information +
History +

Abstract

The study of microscopic mechanisms of photodissociation and photoionization on small molecules is the major focus in the field of molecular reaction dynamics, which is important from both theoretical and practical aspects. It not only can reveal the physicochemical nature of the interaction between molecules and light, but also can help to understand and eventually regulate the chemical reaction process at the quantum level. This paper systematically reviews the research accomplishments achieved by Academician Zhu Qihe’s group in this field over the years. By utilizing the home-made photofragment translational spectrometers, they have comprehensively explored the photodissociation processes and revealed the microscopic reaction mechanisms for a series of halogenated hydrocarbons in the A band, by measuring the translational energies and spatial angular distributions of the photofragments. They have also investigated the geometric configurations, vibrational spectra, transition energies and ionization energies of benzene derivatives in different electronic states, by using the home-made resonance-enhanced multi-photon ionization and mass-analyzed threshold ionization spectrometers combined with quantum chemical calculations. They summarized the influences of multi-halogen effects, substituent effects and conformational isomerism effects on molecular properties and spectroscopy, supplying important information on the characteristics of excited and ionic states of molecules. These achievements not only deepen our understanding of the microscopic mechanism of chemical reactions, but also provide an important theoretical basis for their practical applications in the fields of atmospheric chemistry, environmental chemistry, biochemistry and material sciences.

Key words

photodissociation / photoionization / halohydrocarbons / benzene derivatives

Cite this article

Download Citations
Min Cheng , Lijuan Zhang , Xiling Xu , et al . The Photodissociation and Photoionization Dynamics of Some Important Small Molecules[J]. Progress in Chemistry. 2024, 36(12): 1830-1848 https://doi.org/10.7536/PC241110

References

[1]
Schinke R. Photodissociation dynamics: spectroscopy and fragmentation of small polyatomic molecules. Cambridge [England]: Cambridge University Press, 1993.
[2]
Molina M J, Rowland F S. Nature, 1974, 249(5460): 810.
[3]
Vogt R, Sander R, von Glasow R, Crutzen P J. J. Atmos. Chem., 1999, 32(3): 375.
[4]
Chen H Y, Lien C Y, Lin W Y, Lee Y T, Lin J J. Science, 2009, 324(5928): 781.
[5]
Ashfold M N R, Lambert I R, Mordaunt D H, Morley G P, Western C M. J. Phys. Chem., 1992, 96(7): 2938.
[6]
Herzberg G. Molecular Spectra and Molecular Structure. Van Nostrand Reinhold: New York:1950.
[7]
Wu Z K, Tang A Q. Monograph on Molecular Spectroscopy. Shandong Science and Technology Press: Jinan, 1999.
(吴征铠, 唐敖庆, 分子光谱学专论. 山东科学技术出版社: 济南, 1999.)
[8]
Boesl U, Neusser H J, Schlag E W. Z. Für Naturforschung A, 1978, 33(12): 1546.
[9]
Zandee L, Bernstein R B, Lichtin D A. J. Chem. Phys., 1978, 69(7): 3427.
[10]
Zare R N. Annual Rev. Anal. Chem., 2012, 5: 1.
[11]
Müller-Dethlefs K, Schlag E W. Annu. Rev. Phys. Chem., 1991, 42: 109.
[12]
Turner D W, Al Jobory M I. J. Chem. Phys., 1962, 37(12): 3007.
[13]
Zhu L C, Johnson P. J. Chem. Phys., 1991, 94(8): 5769.
[14]
Zhu Q H, Huang S L, et al. Acta Phys.-Chim. Sin., 1985, 1: 211.
(朱起鹤, 黄寿令, 等. 物理化学学报, 1985, 1: 211.)
[15]
Wang X, Tian Z X, Shi T J, Shi X H, Yang D L, Zhu Q H. Chem. Phys. Lett., 2003, 380(5-6): 600.
[16]
Yu Z J, Xu X L, Cheng M, Yu D, Du Y K, Zhu Q H. J. Chem. Phys., 2009, 131(4): 044323.
[17]
Qi W K, Jiang P, Lin D, Chi X P, Cheng M, Du Y K, Zhu Q H. Rev. Sci. Instrum., 2018, 89(1): 013101.
[18]
Riley S J, Wilson K R. Faraday Discuss. Chem. Soc., 1972, 53: 132.
[19]
Sparks R K, Shobatake K, Carlson L R, Lee Y T. J. Chem. Phys., 1981, 75(8): 3838.
[20]
Eppink A T J B, Parker D H. J. Chem. Phys., 1998, 109(12): 4758.
[21]
Eppink A T J B, Parker D H. J. Chem. Phys., 1999, 110(2): 832.
[22]
Li G S, Shin Y K, Hwang H J. J. Phys. Chem. A, 2005, 109(41): 9226.
[23]
Rubio-Lago L, García-Vela A, Arregui A, Amaral G A, Bañares L. J. Chem. Phys., 2009, 131(17): 174309.
[24]
Guo H, Schatz G C. J. Chem. Phys., 1990, 93(1): 393.
[25]
Guo H. J. Chem. Phys., 1992, 96(4): 2731.
[26]
Alekseyev A B, Liebermann H P, Buenker R J, Yurchenko S N. J. Chem. Phys., 2007, 126(23): 234102.
[27]
Alekseyev A B, Liebermann H P, Buenker R J. J. Chem. Phys., 2007, 126(23): 234103.
[28]
Evenhuis C R, Manthe U. J. Phys. Chem. A, 2011, 115(23): 5992.
[29]
Person M D, Kash P W, Butler L J. J. Chem. Phys., 1991, 94(4): 2557.
[30]
Felder P. Chem. Phys., 1990, 143(1): 141.
[31]
Aguirre F, Pratt S T. J. Chem. Phys., 2003, 118(3): 1175.
[32]
Van Veen G N A, Baller T, De Vries A E, Shapiro M. Chem. Phys., 1985, 93(2): 277.
[33]
Clary D C. J. Chem. Phys., 1986, 84(8): 4288.
[34]
Li G, Hwang H J. J. Chem. Phys., 2006, 124(24): 244306.
[35]
Gedanken A, Rowe M D. Chem. Phys. Lett., 1975, 34(1): 39.
[36]
Godwin F G, Paterson C, Gorry P A. Mol. Phys., 1987, 61(4): 827.
[37]
Huang Y H. Master's Dissertation of Graduate University of Chinese Academy of Sciences, 1988.
(黄玉惠. 中国科学院研究生院硕士论文, 1988.)
[38]
Zhu Q H, Cao J R, Wen Y, Zhan, J M, Zhong X, Huang Y H, Fang W Q, Wu X J. Chem. Phys. Lett., 1988, 144(5,6): 486.
[39]
Cao J R, Huang Y H, Yang D L, Gao Z, Fang W Q, Wu X J, Zhu Q H. Chin. J. Chem. Phys., 1990, 3: 235.
(曹建如, 黄玉惠, 杨达林, 高振, 方万全, 武小军, 朱起鹤. 化学物理学报, 1990, 3: 235.)
[40]
Suzuki T, Kanamori H, Hirota E. J. Chem. Phys., 1991, 94(10): 6607.
[41]
Hammerich A D, Manthe U, Kosloff R, Meyer H D, Cederbaum L S. J. Chem. Phys., 1994, 101(7): 5623.
[42]
Cheng M, Yu Z J, Hu L L, Yu D, Dong C W, Du Y K, Zhu Q H. J. Phys. Chem. A, 2011, 115(7): 1153.
[43]
Hu L L, Zhou Z M, Dong C W, Zhang L J, Du Y K, Cheng M, Zhu Q H. J. Chem. Phys., 2012, 137(14): 144302.
[44]
Hause M L, Yoon Y H, Crim F F. J. Chem. Phys., 2006, 125(17): 174309.
[45]
Hause M L, Yoon Y H, Cas, A S, Crim F F. J. Chem. Phys., 2008, 128(10): 104307.
[46]
Epshtein M, Portnov A, Rosenwaks S, Bar I. J. Chem. Phys., 2011, 134(20): 201104.
[47]
Hu L L, Zhou Z M, Dong C W, Zhang L J, Du Y K, Cheng M, Zhu Q H. J. Phys. Chem. A, 2013, 117(21): 4352.
[48]
Zhou Z M, Hu L L, Dong C W, Zhang L J, Liu S, Du Y K, Cheng M, Zhu Q H. Sci. China Chem., 2014, 57(6): 902.
[49]
Li R J, Zhong Q H, Kong F A, Zhu Q H. Chin. Chem. Lett., 1992, 3(12): 989.
[50]
Bowman J M, Huang X C, Harding L B, Carter S. Mol. Phys., 2006, 104(1): 33.
[51]
Tian Z X, Bi W B, Deng H D, Wang X, Tang Z C, Zhu Q H. Chem. Phys. Lett., 2004, 400(1-3): 15.
[52]
Yu Z J, Cheng M, Xu X L, Yu D, Du Y K, Zhu Q H. Chem. Phys. Lett., 2010, 488(4-6): 158.
[53]
Lin D, Hu L L, Liu S, Qi W K, Cheng M, Du Y K, Zhu Q H. J. Phys. Chem. A, 2016, 120(49): 9682.
[54]
Lin D, Cheng M, Du Y K, Zhu Q H. Chem. J. Chin. Univ.-Chin., 2018, 39: 1713.
(林丹, 程敏, 杜宜奎, 朱起鹤. 高等学校化学学报, 2018, 39:1713.)
[55]
Varner R K, Zhou Y, Russo R S, Wingenter O W, Atlas E, Stroud C, Mao H, Talbot R, Sive B C. J. Geophys. Res.-Atmos., 2008, 113: D10303.
[56]
Cheng M, Lin D, Hu L L, Du Y K, Zhu Q H. Phys. Chem. Chem. Phys., 2016, 18(4): 3165.
[57]
Yu Z J. Doctoral Dissertation of Graduate University of Chinese Academy of Sciences, 2010.
(余紫钧. 中国科学院研究生院博士论文, 2010. )
[58]
Cao J R, Wen Y, Zhang J M, Gu H G, Zhong X, Fang W Q, Duan S X, Wu X J, Zhu Q H. Acta Phys.-Chim. Sin., 1988, 4: 256.
(曹建如, 温晔, 张建明, 顾好刚, 钟宪, 方万全, 段素香, 武小军, 朱起鹤. 物理化学学报, 1988, 4: 256.)
[59]
Tian R J, Li R J, Kong F A, Zhu Q H. Chin. J. Chem. Phys., 1994, 7: 407.
(田如江, 李润君, 孔繁敖, 朱起鹤. 化学物理学报, 1994, 7: 407.)
[60]
Cao J R, Zhang J M, Zhong X, Huang Y H, Fang W Q, Wu X J, Zhu Q H. Chem. Phys., 1989, 138: 377.
[61]
Bi W B, Xu X L, Huang J G, Xiao D Q, Zhu Q H. Sci. China Ser. B Chem., 2007, 50(4): 476.
[62]
Xu X L, Yu Z J, Bi W B, Xiao D Q, Yu D, Du Y K, Zhu Q H. J. Phys. Chem. A, 2008, 112(9): 1857.
[63]
Huang Y H, Cao J R, Wen Y, Zhong X, Zhang J M, Fang W Q, Wu X J, Zhu Q H. Acta Phys.-Chim. Sin., 1987, 3: 337.
(黄玉惠, 曹建如, 温晔, 钟宪, 张建明, 方万全, 武小军, 朱起鹤. 物理化学学报, 1987, 3: 337.)
[64]
Zhu W S, Zhao X S, Han D G, Li R J, Zhong Q H, Zhu Q H. Chem. Phys. Lett., 1993, 204: 538.
[65]
Huang J G, Xiao D Q, Bi W B, Xu X L, Gao Z, Zhu Q H. Zhang C H. J. Mol. Struct., 2006, 794(1-3): 320.
[66]
Huang J G, Xiao D Q, Bi W B, Xu X L, Gao Z, Zhu Q H, Zhang C H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2007, 66(2): 371.
[67]
Xiao D Q, Yu D, Xu X L, Yu Z J, Du Y K, Gao Z, Zhu Q H, Zhang C H. J. Mol. Struct., 2008, 882(1-3): 56.
[68]
Xiao D Q, Yu D, Xu X L, Yu Z J, Du Y K, Gao Z, Zhu Q H. Zhang C H. J. Mol. Struct., 2009, 918(1-3): 154.
[69]
Yu D, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H. J. Mol. Spectrosc., 2011, 265(2): 86.
[70]
Yu D, Dong C W, Zhang L J, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H. J. Mol. Struct., 2011, 1000(1-3): 92.
[71]
Dong C W, Zhang L J, Liu S, Hu L L, Cheng M, Du Y K, Zhu Q H, Zhang C H. J. Mol. Spectrosc., 2013, 292: 35.
[72]
Dong C W, Zhang L J, Liu S, Hu L L, Cheng M, Du Y K, Zhu Q H, Zhang C H. J. Mol. Struct., 2014, 1058: 205.
[73]
Zhang L J, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2012, 96: 578.
[74]
Zhang L J, Yu D, Dong C W, Cheng M, Hu L L, Zhou Z M, Du Y K, Zhu Q H, Zhang C H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 104: 235.
[75]
Zhang L J, Liu S, Dong C W, Cheng M, Du Y K, Zhu Q H, Zhang C H. J. Mol. Spectrosc., 2014, 296: 28.
[76]
Zhang L J, Liu S, Cheng M, Du Y K, Zhu Q H. J. Phys. Chem. A, 2016, 120(1): 81.
[77]
Liu S, Dai W S, Lin D, Cheng M, Du Y K, Zhu Q H. J. Mol. Spectrosc., 2017, 338: 15.
[78]
Liu S, Dai W S, Zhang L J, Cheng M, Du Y K, Zhu Q H. J. Mol. Struct., 2017, 1146: 138.
[79]
Liu S, Zhang L J, Dai W S, Cheng M, Du Y K, Zhu Q H. J. Mol. Spectrosc., 2017, 336: 12.
[80]
Dai W S, Liu S, Zhang Z, Chi X P, Cheng M, Du Y K, Zhu Q H. Phys. Chem. Chem. Phys., 2018, 20(9): 6211.
[81]
Zhang L J, Li D Z, Cheng M, Du Y K, Zhu Q H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2017, 183: 177.
[82]
Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R. Science, 2019, 365(6448): 79.
[83]
Yang J, Zhu X L, Wolf T J A, Li Z, Nunes J P F, Coffee R, Cryan J P, Gühr M, Hegazy K, Heinz T F, Jobe K, Li R K, Shen X Z, Veccione T, Weathersby S, Wilkin K J, Yoneda C, Zheng Q, Martinez T J, Centurion M, Wang X J. Science, 2018, 361(6397): 64.
[84]
Park S M, Kwon C H. J. Phys. Chem. Lett., 2023, 14(42): 9472.
[85]
Li X, Gao X H, Li W K, Yang T, Zhang D D, He L H, Luo S Z, Zhao S F, Ding D J. Phys. Rev. A, 2024, 109: 013103.
[86]
Kallos I S, Bar I, Baraban J H. J. Phys. Chem. Lett., 2024, 15(9): 2639.
PDF(41462 KB)

Accesses

Citation

Detail

Sections
Recommended

/