Oxygen Storage and Release Mechanism of Oxygen Carriers

Nina Chen, Zhiqiang Li, Longyi Guo, Longyu Wen, Lei Jiang, Kongzhai Li

Prog Chem ›› 2025, Vol. 37 ›› Issue (8) : 1156-1176.

PDF(16222 KB)
Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16222 KB)
Prog Chem ›› 2025, Vol. 37 ›› Issue (8) : 1156-1176. DOI: 10.7536/PC241212
Review

Oxygen Storage and Release Mechanism of Oxygen Carriers

Author information +
History +

Abstract

Chemical looping (CL) technology has been widely used in fields such as in-situ capture of carbon dioxide,hydrogen production,oxidative dehydrogenation and partial oxidation of methane. The development of oxygen carriers is the key link to the advancement of CL. Exploring the mechanism of oxygen storage and release in the oxygen carrier lattice is important for the design of high-performance oxygen carriers,the explanation of CL reaction mechanism,and the regulation of product selectivity and yield. First,this paper systematically reviews the research methods and progress of oxygen storage and release mechanism of oxygen carriers,presenting the important role of key characterization techniques in exploring the lattice oxygen migration mechanism. At the same time,we summarize the reaction mechanism of different types of oxygen carriers and the spatiotemporal evolution characteristics of active components,providing theoretical support for the design and modification of oxygen carriers. Furthermore,this paper also focuses on the difficulties and controversies in the study of oxygen storage and release mechanism of CL oxygen carriers. Finally,some perspectives on the current studies of mechanism for oxygen carriers were presented.

Contents

1 Introduction

2 The research method to study the mechanism of oxygen storage and release by oxygen carriers

2.1 Advanced characterization Techniques

2.2 Experimental design method

2.3 Primary calculation method

3 Study on lattice oxygen migration mechanism during oxygen storage and release

3.1 Lattice oxygen migration mechanism of spinel oxygen carriers

3.2 Lattice oxygen migration mechanism of perovskite-type oxygen carriers

3.3 Lattice oxygen migration mechanism of other metal based oxygen carriers

4 Study on metal ions migration mechanism during oxygen storage and release

5 Research limitations in oxygen storage and release processes

5.1 Limitations of the research method

5.2 Limitations of the research mechanism

Key words

chemical looping / characterization technology / lattice oxygen / oxygen storage and release mechanism / active ion

Cite this article

Download Citations
Nina Chen , Zhiqiang Li , Longyi Guo , et al . Oxygen Storage and Release Mechanism of Oxygen Carriers[J]. Progress in Chemistry. 2025, 37(8): 1156-1176 https://doi.org/10.7536/PC241212

References

[1]
Di Z C, Cao Y, Yang F L, Cheng F Q, Zhang K. Fuel, 2018, 226: 618.
[2]
Neal L M, Haribal V P, Li F X. iScience, 2019, 19: 894.
[3]
Duan Y F, Chen C Z, Zhang J S, Wang X H, Wei J J. Sci. Sin. Chim., 2020, 50(3): 337.
(段一菲, 陈存壮, 张军社, 王新赫, 魏进家. 中国科学: 化学, 2020, 50(3): 337.).
[4]
Bahzad H, Shah N, Mac Dowell N, Boot-Handford M, Soltani S M, Ho M, Fennell P S. Int. J. Hydrog. Energy, 2019, 44(39): 21251.
[5]
Zhang J R, Yang T L, Rao Q, Gai Z R, Li P, Shen Y H, Liu M K, Pan Y, Jin H G. Fuel, 2024, 366: 131344.
[6]
Yadav S, Mondal S S. Fuel, 2022, 308: 122057.
[7]
Tang M C, Xu L, Fan M H. Appl. Energy, 2015, 151: 143.
[8]
Jin H G, Hong H, Han T. Chin. Sci. Bull., 2008, 53(24): 2994
(金红光, 洪慧, 韩涛. 科学通报, 2008, 53(24): 2994.).
[9]
Wang J R, Liu D W, Deng Y, Xu J, Ma X X, Xu L. Chem. Ind. Eng. Prog., 2024, 43(5): 2235
(王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 化工进展, 2024, 43(5): 2235.).
[10]
Zanthoff H W, Buchholz S A, Pantazidis A, Mirodatos C. Chem. Eng. Sci., 1999, 54(20): 4397.
[11]
Chen D K, He D D, Lu J C, Zhong L P, Liu F, Liu J P, Yu J, Wan G P, He S F, Luo Y M. Appl. Catal. B Environ., 2017, 218: 249.
[12]
Zhou Z H, Sun Z K, Duan L B. Curr. Opin. Green Sustain. Chem., 2023, 39: 100721.
[13]
Fan L S, Zeng L, Wang W, Luo S W. Energy Environ. Sci., 2012, 5(6): 7254.
[14]
Huang Z, Gao N, Lin Y, Wei G Q, Zhao K, Zheng A Q, Zhao Z L, Yuan H R, Li H B. Chem. Eng. J., 2022, 429: 132064.
[15]
Miller D D, Siriwardane R. Appl. Energy, 2018, 224: 708.
[16]
Chen S, Pei C L, Chang X, Zhao Z J, Mu R T, Xu Y Y, Gong J L. Angew. Chem. Int. Ed., 2020, 59(49): 22072.
[17]
Camp J C J, Mantle M D, York A P E, McGregor J. Rev. Sci. Instrum., 2014, 85(6): 063111.
[18]
Gilgenbach C, Chen X, Xu M, LeBeau J. Microsc. Microanal., 2023, 29(1): 286.
[19]
Song D, Lin Y, Fang S W, Li Y, Zhao K, Chen X F, Huang Z, He F, Zhao Z L, Huang H Y, Li F X. Carbon Energy, 2024, 6(8): e493.
[20]
Zeng L, Luo S W, Sridhar D, Fan L S. Rev. Chem. Eng., 2012, 28(1): 1.
[21]
Rotko M. Catal. Commun., 2023, 177: 106644.
[22]
Rao Z Q, Wang K W, Cao Y H, Feng Y B, Huang Z A, Chen Y L, Wei S Q, Liu L Y, Gong Z M, Cui Y, Li L N, Tu X, Ma D, Zhou Y. J. Am. Chem. Soc., 2023, 145(45): 24625.
[23]
Zhao H B, Zhang Y L, Wei Y J, Gui J F. Proc. Combust. Inst., 2017, 36(3): 4069.
[24]
Wu L-N, Tian Z-Y, El Kasmi A, Arshad M F, Qin W. Proc. Combust. Inst., 2021, 38(4): 5289.
[25]
Liu L B, Tang Y F, Liu S, Yu M L, Fu X Z, Luo J L, Xiao W, Liu S B. ACS Appl. Mater. Interfaces, 2024, 16(49): 67830.
[26]
Zhao Z J, Xu P, Zhang X Y, Qu B L, Liu F. Chinese J. Inorg. Chem., 2024, 1
(赵志娟, 徐鹏, 章小余, 屈宝龙, 刘芬. 中国无机分析化学, 2024, 1.).
[27]
Manova D, Mändl S. J. Appl. Phys., 2019, 126(20): 200901.
[28]
Zhang Y P, Xue D F. Chem. Res., 2020, 31(1): 1
(张艳平, 薛冬峰. 化学研究, 2020, 31(1): 1.).
[29]
Nakano N, Torimoto M, Sampei H, Yamashita R, Yamano R, Saegusa K, Motomura A, Nagakawa K, Tsuneki H, Ogo S, Sekine Y. RSC Adv., 2022, 12(15): 9036.
[30]
He Y, Sheng J P, Ren Q, Sun Y J, Hao W C, Dong F. ACS Catal., 2023, 13(1): 191.
[31]
Jelinski L W, Melchior M T. Appl. Spectrosc. Rev., 2004, 35(1/2): 25.
[32]
Marquis E A, Bachhav M, Chen Y M, Dong Y, Gordon L M, McFarland A. Curr. Opin. Solid State Mater. Sci., 2013, 17(5): 217.
[33]
Song Z X, Li J J, Davis K D, Li X F, Zhang J J, Zhang L, Sun X L. Small Meth., 2022, 6(11): 2201078.
[34]
Saupsor J, Pei C L, Li H F, Wongsakulphasatch S, Kim-Lohsoontorn P, Ratchahat S, Kiatkittipong W, Assabumrungrat S, Gong J L. Energy Fuels, 2021, 35(14): 11580.
[35]
Wang Y, Li L, Li G Y, Zhao Q, Wu X S, Wang Y N, Sun Y F, Hu C W. ACS Catal., 2023, 13(10): 6486.
[36]
Su Z A, Li X S, Si W Z, Artiglia L, Peng Y, Chen J J, Wang H L, Chen D L, Li J H. ACS Catal., 2023, 13(6): 3444.
[37]
Li T Y, Jayathilake R S, Taylor D D, Rodriguez E E. Chem. Commun., 2019, 55(34): 4929.
[38]
Miller D D, Riley J, Siriwardane R. Energy Fuels, 2020, 34(2): 2193.
[39]
Zhang F, Yao S Y, Liu Z Y, Gutiérrez R A, Vovchok D, Cen J J, Xu W Q, Ramírez P J, Kim T, Senanayake S D, Rodriguez J A. J. Phys. Chem. C, 2018, 122(50): 28739.
[40]
Song D, Lin Y, Zhao K, Huang Z, He F, Xiong Y. Catalysts, 2022, 12(10): 1181.
[41]
Ren Y W, Lei X, Wang H, Xiao J P, Qu Z P. ACS Catal., 2023, 13(12): 8293.
[42]
Yin J L, Feng R R, Zhang Y C, Zhao J Q. Fine Chem., 2024, 41(5): 943
(尹钧濂, 冯冉冉, 张月成, 赵继全. 精细化工, 2024, 41(5): 943.).
[43]
Lin S Y, Usov P M, Morris A J. Chem. Commun., 2018, 54(51): 6965.
[44]
Liu D Q, Shadike Z, Lin R Q, Qian K, Li H, Li K K, Wang S W, Yu Q P, Liu M, Ganapathy S, Qin X Y, Yang Q H, Wagemaker M, Kang F Y, Yang X Q, Li B H. Adv. Mater., 2019, 31(28): 1806620.
[45]
Mali G, Mazaj M. J. Phys. Chem. C, 2021, 125(8): 4655.
[46]
Navickas E, Huber T M, Chen Y, Hetaba W, Holzlechner G, Rupp G, Stöger-Pollach M, Friedbacher G, Hutter H, Yildiz B, Fleig J. Phys. Chem. Chem. Phys., 2015, 17(12): 7659.
[47]
Matsui H, Ishiguro N, Enomoto K, Sekizawa O, Uruga T, Tada M. Angew. Chem. Int. Ed., 2016, 55(39): 12022.
[48]
Hunger M, Wang W. Chem. Commun., 2004, 5: 584.
[49]
Dai C L, Guo F, Wang P, Li D Z, Zhang L. Surf. Interface Anal., 2020, 52(5): 301.
[50]
Tang J L, Ni Z G, Zhang Y Y, Zhao Y, Luo Q, Wang F Y. J. Anal. At. Spectrom., 2022, 37(4): 890.
[51]
Kubicek M, Cai Z H, Ma W, Yildiz B, Hutter H, Fleig J. ACS Nano, 2013, 7(4): 3276.
[52]
Liu Y P, Sheng W F, Wu Z H. J. Inorg. Mater., 2021, 36(9): 901.
(刘云鹏, 盛伟繁, 吴忠华. 无机材料学报, 2021, 36(9): 901.).
[53]
Yuan N N. Doctoral Dissertation of Ningxia University, 2022
(袁妮妮. 宁夏大学博士论文, 2022.).
[54]
Sun Z C, Luo S W, Qi P P, Fan L S. Chem. Eng. Sci., 2012, 81: 164.
[55]
Wang J M, Yang H B, Wu Z H, Qiu X P, Guo F. Acta Chim. Sinica, 2003, 61(9): 1410
(王军民, 杨海波, 武增华, 邱新平, 郭峰. 化学学报, 2003, 61(9): 1410.).
[56]
Sun Z C, Yu F C, Li F X, Li S G, Fan L S. Ind. Eng. Chem. Res., 2011, 50(10): 6034.
[57]
Li F X, Sun Z C, Luo S W, Fan L S. Energy Environ. Sci., 2011, 4(3): 876.
[58]
Ouyang M Z, Boldrin P, Maher R C, Chen X L, Liu X H, Cohen L F, Brandon N P. Appl. Catal. B Environ., 2019, 248: 332.
[59]
Day M, Tachibana S, Bell J, Lijewski M, Beckner V, Cheng R K. Combust. Flame, 2012, 159(1): 275.
[60]
Liu X Y, Ma Z Y, Gao X H, Bai M M, Ma Y J, Meng Y. Catalysts, 2022, 12(1): 27.
[61]
Li H X, Shi L, Jin C K, Ye R P, Zhang R B. Catalysts, 2022, 12(2): 111.
[62]
Bruix A, Margraf J T, Andersen M, Reuter K. Nat. Catal., 2019, 2(8): 659.
[63]
Meng Y, Liu X W, Bai M M, Guo W P, Cao D B, Yang Y, Li Y W, Wen X D. Appl. Surf. Sci., 2019, 480: 478.
[64]
Wang Z M. Master’s Dissertation of Northeastern University, 2013
(王志美. 东北大学硕士论文, 2013.).
[65]
Varghese J J, Trinh Q T, Mushrif S H. Catal. Sci. Technol., 2016, 6(11): 3984.
[66]
Mishra A, Li T Y, Li F X, Santiso E E. Chem. Mater., 2019, 31(3): 689.
[67]
Feng Y, Jin H Y, Wang S. Phys. Chem. Chem. Phys., 2023, 25(13): 9216.
[68]
Cheng Z, Qin L, Guo M Q, Xu M Y, Fan J A, Fan L S. Phys. Chem. Chem. Phys., 2016, 18(47): 32418.
[69]
Gao Y F, Wang X J, Corolla N, Eldred T, Bose A, Gao W P, Li F X. Sci. Adv., 2022, 8(30): eabo7343.
[70]
Cheng Z, Qin L, Fan J A, Fan L S. Engineering, 2018, 4(3): 343.
[71]
Li Z Y, Dong X S, Yan B B, Li J, Wang J, Jiao L G, Chen G Y, Ahmed S, Cao Y. Fuel, 2022, 318: 123663.
[72]
Zhang X H, Su Y H, Pei C L, Zhao Z J, Liu R, Gong J L. Chem. Eng. Sci., 2020, 223: 115707.
[73]
Dueso C, Garcia-Labiano F, Adanez J, Diego L F, Gayan P, Abad A. Fuel, 2009, 88(12): 2357.
[74]
Hu J J, Li C, Guo Q H, Dang J T, Zhang Q G, Lee D J, Yang Y L. Bioresour. Technol., 2018, 263: 273.
[75]
Maya J C, Chejne F, Bhatia S K. Chem. Eng. Sci., 2017, 162: 131.
[76]
Donat F, Hu W T, Scott S A, Dennis J S. Ind. Eng. Chem. Res., 2015, 54(26): 6713.
[77]
Song Q L, Xiao R, Deng Z Y, Shen L H, Xiao J, Zhang M Y. Ind. Eng. Chem. Res., 2008, 47(21): 8148.
[78]
Chen Z H, Liao Y F, Liu G C, Mo F, Ma X Q. Waste Biomass Valorization, 2020, 11(11): 6395.
[79]
Sikarwar S S, Vooradi R, Patnaikuni V S, Kakunuri M, Surywanshi G D. Chem. Pap., 2022, 76(6): 3987.
[80]
Wang K, Yu Q B, Wang Q, Hua J L, Peng R J. Energy Fuels, 2020, 34(5): 6158.
[81]
Kwak B S, Park N K, Baek J I, Ryu H J, Kang M. J. Nanosci. Nanotechnol., 2018, 18(9): 6378.
[82]
Wei Y G, Wang H, Li K Z. J. Rare Earths, 2010, 28(4): 560.
[83]
Zhao Y N, Gu Z H, Li D Y, Yuan J Y, Jiang L, Xu H W, Lu C Q, Deng G X, Li M, Xiao W, Li K Z. Fuel, 2022, 323: 124399.
[84]
Zhou H, Yi Q, Wei G Q, Zhang Y K, Hou Y L, Huang Z, zheng A Q, Zhao Z L, Li H B. Int. J. Hydrog. Energy, 2020, 45(55): 30254.
[85]
Jin H G, Okamoto T, Ishida M. Ind. Eng. Chem. Res., 1999, 38(1): 126.
[86]
Readman J E, Olafsen A, Smith J B, Blom R. Energy Fuels, 2006, 20(4): 1382.
[87]
Liu F, Zhao J Y, Xuan G H, Zhang F, Yang L. Fuel, 2021, 306: 121650.
[88]
Zhang Y L, Zhao H B, Guo L, Zheng C G. Combust. Flame, 2015, 162(4): 1265.
[89]
Zasada F, Janas J, Piskorz W, Gorczyńska M, Sojka Z. ACS Catal., 2017, 7(4): 2853.
[90]
Dai X P, Cheng J, Li Z Z, Liu M Z, Ma Y D, Zhang X. Chem. Eng. Sci., 2016, 153: 236.
[91]
Liu L, Taylor D D, Rodriguez E E, Zachariah M R. Chem. Commun., 2016, 52(68): 10369.
[92]
Zhu J J, Li H L, Zhong L Y, Xiao P, Xu X L, Yang X G, Zhao Z, Li J L. ACS Catal., 2014, 4(9): 2917.
[93]
Zhu X, Li K Z, Neal L, Li F X. ACS Catal., 2018, 8(9): 8213.
[94]
Zhao K, Zheng A Q, Li H B, He F, Huang Z, Wei G Q, Shen Y, Zhao Z L. Appl. Catal. B Environ., 2017, 219: 672.
[95]
Galinsky N L, Huang Y, Shafiefarhood A, Li F X. ACS Sustainable Chem. Eng., 2013, 1(3): 364.
[96]
Yuan N N, Han Z H, Guo Q J, Jian H, Ma J J, Bai H C. Can. J. Chem. Eng., 2023, 101(3): 1577.
[97]
Zheng Y E, Li K Z, Wang H, Wang Y H, Tian D, Wei Y G, Zhu X, Zeng C H, Luo Y M. J. Catal., 2016, 344: 365.
[98]
Atribak I, Bueno-López A, García-García A. J. Catal., 2008, 259(1): 123.
[99]
He F, Chen J, Liu S, Huang Z, Wei G Q, Wang G X, Cao Y, Zhao K. Int. J. Hydrog. Energy, 2019, 44(21): 10265.
[100]
Zhang R J, Liu G, Huo C B, Liu J, Zhang B, Yang B L, Tian X Y, Wu Z Q. ACS Catal., 2024, 14(10): 7771.
[101]
Lee M, Lim H S, Kim Y, Lee J W. Energy Convers. Manag., 2020, 207: 112507.
[102]
Chang W X, Gao Y M, He J H, Xia X, Huang C D, Hu Y, Xu W B, Jiang B, Han Y J, Zhu Y Y, Wang X D. J. Mater. Chem. A, 2023, 11(9): 4651.
[103]
Xia X, Chang W X, Cheng S W, Huang C D, Hu Y, Xu W B, Zhang L, Jiang B, Sun Z H, Zhu Y Y, Wang X D. ACS Catal., 2022, 12(12): 7326.
[104]
He J H, Wang T J, Bi X Q, Tian Y B, Huang C D, Xu W B, Hu Y, Wang Z, Jiang B, Gao Y M, Zhu Y Y, Wang X D. Nat. Commun., 2024, 15: 5422.
[105]
Gao Y M, Jiang B, Shi X J, He J H, Wang S M, Huang C D, Li L, Tang D W. Nano Energy, 2023, 117: 108912.
[106]
Jiang B, Li L, Zhang Q, Ma J, Zhang H T, Yu K W, Bian Z F, Zhang X L, Ma X H, Tang D W. J. Mater. Chem. A, 2021, 9(22): 13008.
[107]
Penkala B, Aubert D, Kaper H, Tardivat C, Conder K, Paulus W. Catal. Sci. Technol., 2015, 5(10): 4839.
[108]
Wang Y N, Chan Y S, Zhang R J, Yan B H. Chem. Eng. J., 2024, 481: 148360.
[109]
Kang R N, Huang J Q, Bin F, Teng Z H, Wei X L, Dou B J, Kasipandi S. Appl. Catal. B Environ., 2022, 310: 121296.
[110]
Liu R, Zhang X H, Liu T, Yao X, Zhao Z J, Pei C L, Gong J L. Appl. Catal. B Environ., 2023, 328: 122478.
[111]
Chen X F, Wang L W, Lin Y, Zeng T, Huang Z, Zhang Y Q, Xiong Y, Li J, Deng L S, Huang H Y. Fuel Process. Technol., 2023, 244: 107706.
[112]
Li W Y, Chen L Y. J. Fuel Chem. Technol., 2024, 52(06): 820.
(李婉莹, 陈良勇. 燃料化学学报, 2024, 52(06): 820.).
[113]
Liu Y, Qin L, Cheng Z, Goetze J W, Kong F H, Fan J A, Fan L S. Nat. Commun., 2019, 10: 5503.
[114]
Hsia C, St Pierre G R, Fan L S. AlChE. J., 1995, 41(10): 2337.
[115]
Li F X, Kim H R, Sridhar D, Wang F, Zeng L, Chen J, Fan L S. Energy Fuels, 2009, 23(8): 4182.
[116]
Cho P, Mattisson T, Lyngfelt A. Fuel, 2004, 83(9): 1215.
[117]
Trushenski S P, Li K, Philbrook W O. Metall. Trans., 1974, 5(5): 1149.
[118]
Wang X H, Li J G, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T. J. Am. Chem. Soc., 2005, 127(31): 10982.
[119]
Knutsson P, Linderholm C. Appl. Energy, 2015, 157: 368.
[120]
Su M Z, Cao J, Tian X, Zhang Y L, Zhao H B. Proc. Combust. Inst., 2019, 37(4): 4371.
[121]
Zhang D J, Jin C H, Li Z Y, Zhang Z, Li J X. Sci. Bull., 2017, 62(11): 775.
[122]
Sharna S, Bahri M, Bouillet C, Rouchon V, Lambert A, Gay A S, Chiche D, Ersen O. Nanoscale, 2021, 13(21): 9747.
[123]
Lyngfelt A. Appl. Energy, 2014, 113: 1869.
[124]
Cuadrat A, Abad A, García-Labiano F, Gayán P, de Diego L F, Adánez J. Energy Procedia, 2011, 4: 362.
[125]
Chung C, Qin L, Shah V, Fan L S. Energy Environ. Sci., 2017, 10(11): 2318.
[126]
Tseng Y H, Ma J L, Chin C P, Kuo Y L, Ku Y. J. Taiwan Inst. Chem. Eng., 2014, 45(1): 174.
[127]
Ma Z, Zhang S, Xiao R. Energy Convers. Manag., 2019, 188: 429.
[128]
Blas L, Dorge S, Michelin L, Dutournié P, Lambert A, Chiche D, Bertholin S. Fuel, 2015, 153: 284.
[129]
Kim Y M, Pennycook S J, Borisevich A Y. Ultramicroscopy, 2017, 181: 1.
[130]
Tian X, Su M Z, Zhao H B. Fire, 2024, 7(7): 245.
[131]
Zhang X H. Doctoral Dissertation of Tianjin University, 2021
(张先华. 天津大学博士论文, 2021).

Funding

the National Natural Science Foundation of China(52174279)
PDF(16222 KB)

Accesses

Citation

Detail

Sections
Recommended

/