Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials
† These authors contributed equally to this work.
Received date: 2023-07-26
Revised date: 2023-08-28
Online published: 2023-09-20
Supported by
Hunan province Funds for Distinguished Young Scientists(2022JJ10080)
Hunan Provincial Science and Technology Plan Project, China(2021GK2014)
National Natural Science Foundation of China(52173212)
National Natural Science Foundation of China(52103275)
Hunan Provincial Natural Science Foundation(2021JJ30795)
Hydrogen peroxide (H2O2) is an important green oxidizing agent, but the main anthraquinone process for production thereof suffers high energy consumption and large safety risks. Artificial photosynthesis H2O2 from water and oxygen features safe, environmentally friendly and energy-saving characteristics and has gradually become a research focus. Covalent organic frameworks (COFs) have been widely used in the photocatalytic production of H2O2 for their high specific surface area, good photocatalytic performance and structural tunability. This review summarizes the recent research progress in the field of COFs photocatalytic production of H2O2, discussing the reaction mechanisms for the production of H2O2 through oxygen reduction, water oxidation, and dual-channel processes. It introduces methods to improve the photocatalytic production of H2O2 by regulating the optical bandgap, enhancing charge separation capability, and improving carrier mobility of COFs through structural design and functional group modification. These methods contribute to the design of efficient, stable, and sustainable COFs for photocatalytic production of H2O2.
1 Introduction
2 Hydrogen peroxide production by ORR pathway
2.1 Direct one-step two-electron oxygen reduction mechanism
2.2 Indirect two-step single-electron oxygen reduction mechanism
3 Hydrogen peroxide production by WOR pathway
4 Dual-channel path production of hydrogen peroxide
5 Conclusion and outlook
Anqi Chen , Zhiwei Jiang , Juntao Tang , Guipeng Yu . Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials[J]. Progress in Chemistry, 2024 , 36(3) : 357 -366 . DOI: 10.7536/PC230724
图3 (a) TAPD-(Me)2和TAPD-(OMe)2 COF的合成路线示意图[31]; (b)光催化产H2O2的机理示意图[31]; (c) C-COFs、S-COFs和FS-COFs的合成示意图[32]; (d) C-COFs和FS-COFs氧还原为H2O2的自由能图及FS-COFs生产H2O2的可能步骤[32]Fig. 3 Schematic diagram of the synthesis route of (a) TAPD-(Me)2 and TAPD-(OMe)2 COF[31]; (b) Schematic diagram of the mechanism of photocatalytic hydrogen peroxide production[31]; (c) Synthesis diagram of C-COFS, S-COFs and FS-COFs[32]; (d) Free energy diagram of reduction of O2 via C-COFs and FS-COFs to H2O2 and possible steps of H2O2 production by FS-COFs[32] |
图4 (a) CoPc-BTM-COF和CoPc-DAB - COF的合成路径示意图;(b)电子顺磁共振光谱;(c) CoPc-BTM-COF中Co原子和N原子的氧吸附能计算;(d) CoPc-BTM-COF光催化体系的原位红外光谱;(e) CoPc上的2e-(橙色)和4e-(青色)ORR过程的自由能图[33]Fig. 4 (a) Schematic diagram of synthesis paths of CoPc-BTM-COF and COPc-DAB-COF; (b) EPR spectrum; (c) Calculated oxygen adsorption energy of Co atom and N atom in CoPc-BTM-COF; (d) FT-IR spectra of COPc-BTM-COF photocatalytic systems in situ (e) Free energy diagrams of 2e-(orange) and 4e-(cyan)ORR processes on CoPc[33] |
图5 (a) Bpy-TAPT的合成路线示意图;(b) 三种COFs光催化生产H2O2的研究;(c) Bpy-TAPT和Bpy-TAPB的电子顺磁共振光谱;(d) Bpy-TAPT光催化产H2O2机理[34]Fig. 5 (a) Schematic diagram of the composite route of Bpy-TAPT; (b) Photocatalytic production of H2O2 by three COFs; (c) EPR spectra of Bpy-TAPT and Bpy-TAPB; (d) Mechanism of H2O2 production by Bpy-TAPT photocatalysis[34] |
图8 (a)CTFs的化学结构[42];(b)氧气吸附吉布斯自由能变图[42];(c)直接两电子水氧化反应路径合成过氧化氢的吉布斯自由能变化图[42];(d)CHFs的化学结构[43];(e)HEP-TAPT-COF和HEP-TAPB-COF合成示意图[45]Fig. 8 (a) The chemical structure of CTFs[42]; (b) Oxygen adsorption Gibbs free energy variable map[42]; (c) Direct two-electron water oxidation reaction path synthesis of hydrogen peroxide Gibbs free energy variation[42]; (d) The chemical structure of CHFs[43]; (e) Synthesis diagram of HEP-TAPT-COF and HEP-TAPB-COF[45] |
图9 (a)联吡啶活性位点合成COF-TfpBpy的示意图;(b)g-C3N4结构示意图(c)和(d)光催化产H2O2过程中的位于900~1650 cm−1和3000~3500 cm−1处的原位红外[46];(e)光催化产H2O2过程中的位于900~1650 cm−1处的原位红外[46];(f)TTF-BT-COF的结构[47];(g)TD-COF和TT-COF的化学结构[48]Fig. 9 (a) Schematic diagram of the synthesis of COF-TfpByy from the active site of bipyridine (b) g-C3N4 structure (c) and (d) in situ infrared at 900~1650 cm−1 and 3000~3500 cm−1 during photocatalytic production of H2O2 (e) in situ infrared at 900~1650 cm−1 during photocatalytic production of H2O2[46]; (f) The chemical structure of TTF-BT-COF[47]; (g)The chemical structures of TD-COF and TT-COF [48] |
表1 COFs材料通过ORR路径应用于光催化产过氧化氢Table 1 COFs materials are applied to photocatalytic hydrogen peroxide production via ORR path |
Photocatalyst | Reaction condition | Solution condition | H2O2 generation rate | ref |
---|---|---|---|---|
CTF-NS-5BT | λ>420 nm | Water:BA (9∶1) | 1630 μmol·h-1·gcat-1 | 13 |
TPB-DMTP-COF | λ > 420 nm | Pure water | 2882 μmol·h-1·gcat -1 | 14 |
TpMa/CN-5 | λ>420 nm | Isopropanol+water | 880.46 μmol | 15 |
COF-TTA-TTTA | λ~420 nm | H2O∶EtOH=9∶1 | 4347 μmol·h-1·gcat-1 | 16 |
TiCOF-spn | \ | \ | 489.94 μmol·h-1·gcat-1 | 17 |
EBA-COF | λ=420 nm | H2O∶benzyl alcohol=9∶1 | 2550 μmol·h-1·gcat-1 | 18 |
Bpt-CTF | λ=350~780 nm | H2O | 32.681 μmol/h | 19 |
N0-COF | λ=495 nm | \ | 15.7 μmol/h | 20 |
1H-COF | \ | \ | 18.3 μmol/h | 21 |
TpDz | λ>420 nm | H2O | 7327 umol h-1 gcat-1 | 22 |
DMCR-1NH | λ = 420~700 nm | Water∶IPA (10∶1) | 2588 μmol·h-1·gcat-1 | 23 |
Py-Da-COF | λ >420 nm | H2O∶BA = 9∶1 | 1242 μmol·h-1·gcat-1 | 24 |
4PE-N-S | λ > 420 nm | Real seawater∶EtOH= 9∶1 | 2556 μmol·h-1·gcat-1 | 25 |
PMCR-1 | λ= 420~700 nm | Water∶BA (10∶1) | 129 028 μmol/g (60 h) | 26 |
COF-TpHt | λ>420 nm | H2O∶BnOH=9∶1 | 11 986 μmol·h-1·gcat-1 | 28 |
TpAQ-COF-12 | λ > 420 nm | pure water | 420 μmol·h-1·gcat-1 | 29 |
TAPD-(Me)2-COF | λ=420~700nm | H2O∶EtOH=1∶9 | 234.52 μmol·h-1·gcat-1 | 31 |
FS-COFs | λ > 420 nm | H2O | 3904 μmol·h-1·gcat-1 | 32 |
CoPc-BTM-COF | λ>400 nm | H2O∶EtOH=9∶1 | 2096 μmol·h-1·gcat-1 | 33 |
Bpy-TAPT | λ>420 nm | H2O | 4038 μmol·h-1·gcat-1 | 34 |
COF-TAPB-BPDA | λ > 420 nm | H2O∶BA (4∶1) | 1240 μmol·h-1·gcat-1 | 35 |
TZ-COF | \ | H2O∶Benzyl alcohol (1∶1) | 4951 μmol·h-1·gcat-1 | 36 |
SonoCOF-F2 | λ>420 nm | \ | 197 μmol(24 h) | 37 |
TF50-COF | λ>400 nm | H2O∶EtOH=9∶1 | 1739 μmol·h-1·gcat-1 | 38 |
CN-COF | λ>400 nm | H2O∶EtOH (9∶1) | 2623 μmol·h-1·gcat-1 | 39 |
TAPB-PDA-OH | λ=420 nm | H2O∶EtOH=9∶1 | 2117.6 μmol·h-1·gcat-1 | 40 |
表2 COFs材料通过WOR和双通道路径应用于光催化产过氧化氢Table 2 COFs materials used for photocatalytic hydrogen peroxide production via WOR and dual-channel pathways |
Photocatalyst | Reaction Condition | Solution condition | H2O2 generation rate | Ref |
---|---|---|---|---|
DETH-COF | λ=450 nm | Pure Water | 1665 μmol·g-1·h-1 | 41 |
CTF-BDDBN | λ>420 nm | Pure Water | 26.6 μmol·h-1 | 42 |
CTF-DPDA | λ>420 nm | Pure Water | 69 μmol·h-1 | 43 |
HEP-TAPT-COF | λ>420 nm | Pure Water | 87.50 μmol·h−1 | 45 |
COF-TfpBpy | λ=420 nm | Pure Water | 1 042 μM·h−1 | 46 |
TTF-BT-COF | λ=412 nm | Pure Water | 276 000 μM·h−1·g−1 | 47 |
TD-COF | λ>420 nm | Sea Water | 3 364 μmol·h -1·g-1 | 48 |
COF-nust-8 | λ>420 nm | H2O∶EtOH=9∶1 | 1 081 μmol·h -1·g-1 | 49 |
TDB-COF | λ>420 nm | Pure Water | 723.5 μmol·h -1·g-1 | 50 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
(宋鑫. 燕山大学硕士论文, 2020)
|
[8] |
(吴敏杰. 北京化工大学硕士论文, 2019)
|
[9] |
|
[10] |
(李新立. 郑州大学硕士论文, 2020 )
|
[11] |
(杨晓茹, 邓明杨, 张晓昕. 应用化工, 2023, 52 (5): 1508.).
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42]. |
|
[43]. |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
/
〈 |
|
〉 |