Recent Advances in Quasi-Two-Dimensional Blue Perovskite Light- Emitting Diodes
Received date: 2023-07-10
Revised date: 2023-10-27
Online published: 2023-12-29
Supported by
National Natural Science Foundation of China(62074083)
Science and Technology Project of Jiangsu (Science and Technology Cooperation Project of Hong Kong, Macao and Taiwan(BZ2023059)
Natural Science Fund for Colleges and Universities in Jiangsu Province(20KJA510005)
Project of State Key Laboratory of Organic Electronics and Information Displays(GDX2022010009)
Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX21_0781)
Blue perovskite light-emitting diodes (PeLEDs) restrict the rapid development of full-color display and white lighting technology of perovskite. Quasi-two-dimensional (Q2D) perovskite enables to realize blue light emission via strict control on layer number and use of quantum confinement effect and can significantly improve the stability of perovskite film and PeLEDs by using hydrophobic organic ligands, which has gradually become a research hotspot in the field of perovskites. This review summarizes the research progress on Q2D blue PeLEDs from three aspects of component engineering, film process and device optimization, and analyzes the challenges faced by Q2D blue PeLEDs and the efficiency improvement approaches. At last, this paper envisages the future research direction and feasible solutions.
Contents
1 Introduction
2 Overview of quasi-two-dimensional perovskites
3 Research progress of quasi-two-dimensional blue perovskite light-emitting diodes
3.1 Component engineering
3.2 Film process optimization
3.3 Device structure optimization
4 Challenges faced by quasi-two-dimensional blue light-emitting perovskites
4.1 Photoluminescence quantum efficiency
4.2 Spectral stability
4.3 Phase purity
4.4 Charge injection efficiency and interface engineering
5 Conclusion and outlook
Juan Ma , Ruiyu Yang , Yanfeng Chen , Ying Liu , Shufen Chen . Recent Advances in Quasi-Two-Dimensional Blue Perovskite Light- Emitting Diodes[J]. Progress in Chemistry, 2024 , 36(2) : 224 -233 . DOI: 10.7536/PC230705
图2 (a) 间隔阳离子从<100>晶面将三维钙钛矿切割成层状钙钛矿的结构示意图[17];(b) RP和DJ相层状钙钛矿的晶体结构(n = 3)[17];(c) ACI相层状钙钛矿的晶体结构(n = 1,2,3)Fig. 2 (a) Structure derivation of a layered perovskite with spacer cations cutting the 3D perovskite from the <100> plane[17], Copyright 2019, American Chemical Society; (b) crystal structures of RP and DJ phase layered perovskites (n = 3)[17], Copyright 2019, American Chemical Society; (c) crystal structures of layered perovskite of ACI phase (n = 1, 2, 3). |
图3 (a) 不同n值的PEA2(FAPbBr3)n−1PbBr4的PL光谱[22];(b) Q2DPe的带隙,插图是n=1,3,5的准2D的钙钛矿的原子模型[23];(c) 小n相Q2DPe到大n相Q2DPe之间电荷转移或激子漏斗的能带图;(d) 不同氯化物含量的一系列准二维PBABr:CsPbBrxCl3−x 钙钛矿薄膜的归一化PL光谱[24]Fig. 3 (a) PL spectra of PEA2(FAPbBr3)n−1PbBr4 with different n values[22], Copyright 2018, Nature Publishing Group; (b) band gaps of quasi-2D perovskites, illustrated as atomic models of quasi-2D perovskites with n=1, 3, and 5[23], Copyright 2019, Wiley-Blackwell; (c) energy band diagram of charge transfer or funneling of excitons between Q2DPe of small n to large n phase; (d) normalized PL spectra for a series of quasi-2D PBABr:CsPbBrxCl3−x perovskite films with different chloride content[24], Copyright 2019, American Chemical Society. |
图4 (a) PEA2(Cs1−xEAxPbBr3)2PbBr4钙钛矿LED的外量子效率(EQE)与电流密度的关系[15];(b) PEA2(Cs1−xEAxPbBr3)2PbBr4钙钛矿LED的归一化电致发光(EL)光谱[15];(c) CsPbBr3: PEACl:YCl3薄膜辐射复合示意图[30];(d) 不同YCl3含量PeLEDs的EQE曲线。插图为点亮的PeLEDs照片[30]Fig. 4 (a) Characterization of external quantum efficiency (EQE) versus current density of PEA2(Cs1−xEAxPbBr3)2PbBr4 perovskite LED[15], Copyright 2020, Nature Publishing Group; (b) normalized electroluminescence (EL) spectra of PEA2(Cs1−xEAxPbBr3)2PbBr4 PeLED[15], Copyright 2020, Nature Publishing Group; (c) schematic illustration of the yttrium distribution and radiation recombination within the CsPbBr3:PEACl:YCl3 thin-film[30], Copyright 2019, Nature Publishing Group; (d) EQE curves of PeLEDs with different YCl3 percentages. Inset shows the digital photographic image of the operating PeLED[30], Copyright 2019, Nature Publishing Group. |
图5 (a) NCP法制备准二维钙钛矿膜层示意图[32];(b) 固定电流密度和电压下(BA)2(MA)2Pb4I13的EL强度和PLQY[36];(c) 不同温度下(BA)2(MA)2Pb4I13的J-V特性曲线[36]Fig. 5 (a) Schematic diagram of quasi-two-dimensional perovskite film prepared by NCP method[32], Copyright 2019, Royal Society of Chemistry; (b) EL intensity as a function of casting temperature at a fixed current density and fixed voltage and PLQY as a function of casting temperature for (BA)2(MA)2Pb4I13(Pb4) LEDs[36], Copyright 2018, Wiley-Blackwell; (c) J-V characteristic curves for LEDs using (BA)2(MA)2Pb4I13 casted by different temperatures[36], Copyright 2018, Wiley-Blackwell. |
图6 (a) 电流密度和亮度随电压变化的特征曲线[37];(b) EQE与电流密度的关系[37];(c) 混合卤化物钙钛矿的相分离[11]; (d) 准二维PeLEDs的三明治夹层结构Fig. 6 (a) Current-voltage-luminance characteristic curves[37], Copyright 2020, Nature Publishing Group; (b) characterization of EQE versus current density[37], Copyright 2020, Nature Publishing Group; (c) phase segregation of mixed-halide perovskites [11], Copyright 2022, Nature Publishing Group; (d) the sandwich-like interlayer structure of quasi-2D PeLEDs |
表1 蓝色和天蓝色Q2D PeLEDs的性能参数总结Table 1 Summary of performance parameters of blue and sky-blue Q2D PeLEDs |
Perovskite material | Device structure | EL Peak (nm) | EQE (%) | Vt/(V) | Ref |
---|---|---|---|---|---|
PEA2Cs1.6MA0.4Pb3Br10 treated with DPPOCl | ITO/PEDOT:PSS:PFI/Q2DPe/TPBi/LiF/Al | 479 | 5.2 | - | 14 |
PEA2(Rb0.6Cs0.4)Pb3Br10 | ITO/PEDOT:PSS/Q2DPe/TmPyPB/LiF/Al | 475 | 1.35 | 3 | 15 |
(PEA)2PbBr4 | ITO/PEDOT:PSS/2D perovskite/TPBi/Ca/Al | 410 | 0.04 | 2.5 | 18 |
P-PDA,PEACsn−1PbnBr3n+1 | ITO/PVK/PFI/Q2DPe/3TPYMB/Liq/Al | 465 | 2.6 | - | 19 |
PEACl:CsPbBr3:YCl3 | ITO/TB(MA)/Q2DPe/TPBi/LiF/Al | 488 | 13.5% | 6 | 38 |
CsPbBr3:PEACl:YCl3 | ITO/PEDOT:PSS/PVK/Q2DPe/TPBi/LiF/Al | 485 | 11 | 3 | 30 |
PEA2Csn−1Pbn(Br/Cl)3n+1 | ITO/PEDOT:PSS/Q2DPe/TPBi/LiF/Al | 480 | 5.7 | 3.2 | 37 |
(Cs/Rb/FA/PEA/K)Pb(Cl/Br)3 | ITO/LiF/Q2DPe/LiF/Bphen/LiF/Al | 484 | 2.01 | -- | 39 |
EA2(MA)n−1PbnBr3n+1 | ITO/PEDOT:PSS/Q2DPe/TmPyPB/CsF/Al | 485 | 2.6 | 3.4 | 42 |
OLA2MAn−1PbnBr3n+1 | ITO/PEDOT:PSS/PVK/Q2DPe/TPBi/LiF/Al | 456 | 0.0046 | 3.4 | 43 |
BA2MA2Pb3Br7Cl3 | ITO/PEDOT:PSS/Poly-TPD /Q2DPe/TPBi/LiF/Al | 468 | 0.01 | 5.2 | 44 |
POEA2MAn−1PbnBr3n+1 | ITO/PEDOT:PSS/Q2DPe/TPBi/Ba/Al | 480 | 1.1 | 3.6 | 45 |
BA2Csn−1Pbn(Br/Cl)3n+1 | ITO/PEDOT:PSS/Q2DPe/TPBi/Al | 487 | 6.2 | 4.5 | 46 |
PBA2Csn−1Pbn(Br/Cl)3n+1 | ITO/NiOx/LiF/Q2DPe/TPBi/LiF//Al | 490 | 0.52 | - | 24 |
(IPA:PEA)2(MA:Cs)n−1Pbn Br3n+1 | ITO/PEDOT:PSS/Q2DPe/TPBi/LiF/Al | 490 | 1.9 | 5 | 47 |
BA2DMA1.6Cs2Pb3Br11.6 | ITO/PEDOT:PSS or NiOx/Q2DPe/TPBi/LiF/Al | 490 | 2.4 | 3.3 | 48 |
PEA2DMA1.2Cs2Pb3Br11.2 | ITO/PEDOT:PSS or NiOx/Q2DPe/TPBi/LiF/Al | 499 | 1.58 | 4.4 | 48 |
(PEA:NPA)Csn−1PbnBr3n+1 | ITO/poly(N-vinylcarbazole)/PVK/Q2DPe/ PO-T2T/Liq/Al | 485 | 2.62 | 2.6 | 49 |
(PBABr):(Cs/FA/MA)Br:PbBr2 | ITO/PEDOT: PSS/Q2DPe/PO-T2T/LiF/Al | 465 | 2.34 | 2.8 | 50 |
PBA2(FACs)n−1PbnBr3n+1 | ITO/NiOx/TFB/PVK/Q2DPe/TPBi/LiF/Al | 483 | 9.5 | 3.3 | 51 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
/
〈 |
|
〉 |