Preparation of Lignocellulosic Aerogel and Its Flame Retardant Modification
Received date: 2023-08-15
Revised date: 2023-12-05
Online published: 2024-03-15
Supported by
National Natural Science Foundation of China(52072274)
National Natural Science Foundation of China(52272021)
National Natural Science Foundation of China(52232002)
National Natural Science Foundation of China(U23A2055)
Open/Innovation Foundation of Hubei Three Gorges Laboratory(SK232006)
lignocellulose aerogels possess excellent properties of low density,high porosity,low thermal conductivity and so on,making them widely utilized in thermal insulation,adsorption,catalysis,electromagnetic shielding,biomedical and other fields.Moreover,as a bio-based material,lignocellulose is a green,pollution-free,renewable,and sustainable material.in this paper,the latest research progress of wood-based cellulose and agricultural waste-based cellulose aerogels are reviewed.Then the current research status of lignocellulose aerogel preparation methods including freeze-drying,supercritical drying,and atmospheric drying,is summarized.in addition,for the flammability issues commonly found in lignocellulose aerogels,commonly used methods to improve the flame retardancy of lignocellulose aerogels are discussed in detail.Finally,this paper concludes the main problems in lignocellulose aerogel preparation methods and properties,and the future development direction in this field is proposed。
1 Introduction
2 Lignocellulose aerogels
2.1 Wood-based cellulose aerogels
2.2 Agricultural waste-based cellulose aerogels
3 Preparation of lignocellulose aerogel material
3.1 Freeze-drying preparation of lignocellulose aerogels
3.2 Supercritical drying preparation of lignocellulose aerogels
3.3 Atmospheric pressure drying preparation of lignocellulose aerogels
4 Flame retardants of lignocellulose aerogel
4.1 Inorganic flame retardants
4.2 Organic flame retardants
4.3 Organic/inorganic flame retardants
5 Conclusion and outlook
Key words: aerogel; lignocellulose; drying technology; flame retardant properties
Wang Shuang , Zhang Xin , Sun Miao , Duan Hongjuan , Zhang Haijun , Li Shaoping . Preparation of Lignocellulosic Aerogel and Its Flame Retardant Modification[J]. Progress in Chemistry, 2024 , 36(4) : 586 -600 . DOI: 10.7536/PC230813
图1 (a)天然木材的光学图片;(b)天然木材的横截面扫描电子显微镜图片;(c)天然木材的切向截面扫描电子显微镜图;(d)木材基纤维素气凝胶的光学图片;(e)木材基纤维素气凝胶的横截面扫描电子显微镜图片;(f)木材基纤维素气凝胶的切向截面扫描电子显微镜图片[13]Fig. 1 (a) Optical picture of the natural wood; (b) Agricultural section scanning electron microscopy images of natural wood; (c) Tangential Section scanning electron microscopy images of natural wood; (d) Optical picture of lignocellulosic aerogel; (e) Cross section scanning electron microscopy images of lignocellulosic aerogel; (f) Tangential Section scanning electron microscopy images of lignocellulosic aerogel[13] |
表1 Comparison of physical properties of cellulose aerogels prepared by different methodsTable 1 Comparison of physical properties of cellulose aerogels prepared by different methods |
Preparation method | Raw materials | Density (mg/cm3) | Porosity (%) | Compressive strength(kPa) | Specific surface area(m2/g) | Thermal conductivity (mW/(m·K)) | ref |
---|---|---|---|---|---|---|---|
Freeze-drying method | MC, cyanuric acid | 86.0 | 98.2 | - | - | - | 30 |
Cellulose, SH, BTA | 68.0 | 99.8 | 11.9(50%) | 73.9 | - | 31 | |
CNF | 38 | 97.6 | 305(85%) | - | 32 | ||
Cellulose | 30.0 | - | - | 156.7 | - | 34 | |
Cellulose, polyethylene glycol | - | - | - | 3.9002 | - | 35 | |
Cellulose, citric acid | 85.0 | 85.0 | - | - | - | 36 | |
Cellulose, PD, PL | 25.0 | 98.5 | - | - | - | 37 | |
BWP | 7.0 | 99.5 | 15.2(50%) | - | - | 40 | |
BWP | 47.6 | 99.4 | 24.5(70%) | - | - | 42 | |
Wood fiber, carbon nanotubes | - | - | - | 377.9 | - | 43 | |
Cellulose, recumbent | 11.0 | 99.0 | - | - | - | 46 | |
Cellulose, chitosan | 8.4 | 98.0 | 99.3(60%) | - | 28.0 | 47 | |
Cellulose, chitosan | 9.4 | 99.3 | 321.0(50%) | - | 28.0 | 49 | |
CN, CMC | 10.0 | 99.0 | - | - | - | 50 | |
Cellulose, polyimide | 46.0 | 97.7 | - | - | 23.0 | 55 | |
BP, polyvinyl alcohol, GO | 10.2 | 99.4 | 40(80%) | 23.4 | - | 56 | |
Supercritical drying | Cellulose | 33.0 | - | - | 400.0 | 28.0 | 64 |
Cellulose | 15.0 | 99.0 | 37.5(50%) | 500 | 65 | ||
Cellulose | 39.4 | 96.4 | 200.0(50%) | 385.0 | - | 66 | |
Cellulose, ML | 90.0 | 93.6 | 660.0 | 23.0 | 67 | ||
Atmospheric pressure drying method | Cellulose, silane | 54.0 | - | 210.12(20%) | - | 37.0 | 69 |
Cellulose | 58.8 | 98.0 | 70.0(50%) | 22.4 | - | 70 | |
Cellulose, polylactic acid, starch | 88.0 | 93.1 | 81.2(50%) | - | - | 71 | |
WP, borax | 16.4 | 98.0 | 74.1(50%) | - | 45.0 | 72 | |
WP, borax, chitosan | 52.7 | 94.5 | 485.0(50%) | - | 68.0 | 73 |
(MC:microcrystalline cellulose;SH:sodium hypophosphite;BTA:butane tetracarboxylic acid;CNF:cellulose nanofibers;PD:polydopamine;PL:polyethyleneimine;BWP:bleached wood pulp;CN:carbon nanotubes;CMC:carboxymethyl cellulose;BP:bamboo powder;GO:graphene oxide;ML:methyltrimethylsilane;WP:wood pulp.) |
图2 (a)定向冷冻干燥示意图;(b)非定向冷冻干燥示意图;(c)冰箱冷冻干燥示意图[41] (纤维素纳米纤维(CNF);聚乙烯醇(PVA);氧化石墨烯(GO))Fig. 2 Schematic representation of (a) the directional freeze-drying method;(b) the non-directional freeze-drying method and (c) the refrigerator freeze-drying method[41] (Cellulose nanofiber (CNF); polyvinyl alcohol (PVA); graphene oxide (GO)) |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
( 董浩, 李旭, 牛力, 刘志明. 林业工程学报, 2023, 8(05): 121.)
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
( 陈扣琴, 王黎明, 郝慧敏, 凌杭丽, 徐伟. 功能材料, 2022, 53(02): 2107.)
|
[24] |
( 史甜霖, 王汉坤, 吴燕, 胥莉, 詹先旭. 家具. 2018, 39(04): 14.)
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
( 刘延波, 陈云霞, 陈倩, 周聪, 胡楷, 董超, 杨波. 棉纺织技术, 2022, 50(11): 44.)
|
[32] |
( 陈晓星, 曾志文, 陈伟. 武汉理工大学, 2020, 42(07): 8.)
|
[33] |
|
[34] |
( 刘晓婷, 杨辉, 申乾宏, 盛建松, 郭兴忠. 陶瓷学报, 2020, 41(03): 415.)
|
[35] |
( 王泽鹏, 赵柯豫, 蔡雨欣, 黄景达, 孙毅, 张文标. 林业工程学报, 2023, 8(04): 87.)
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
( 陈雪琦, 唐启恒, 常亮, 郭明辉. 林业工程学报, 2023, 8(04): 110.)
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
( 常焕君, 张龙飞, 吕少一, 王思群. 木材科学与技术, 2022, 36(05): 43.)
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
( 陈艳果, 李志伟, 李小红, 吴志申. 中国塑料, 2019, 33(01): 33.)
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
( 方寅春, 孙卫昊. 纺织学报. 2022, 43(01): 43.)
|
/
〈 |
|
〉 |