Rare Earth Based Neutron and Gamma Composite Shielding Materials
Received date: 2023-01-28
Revised date: 2023-06-10
Online published: 2023-07-10
Supported by
Comprehensive Research Facility for Fusion Technology Program of China(2018-000052-73-01-001228)
Institute of Energy, Hefei Comprehensive National Science Center(21KZL401)
Institute of Energy, Hefei Comprehensive National Science Center(21KHH105)
Institute of Energy, Hefei Comprehensive National Science Center(21KZS205)
With the development of aerospace, nuclear technology and the wide use of nuclear energy, the requirement for the performance of nuclear radiation shielding materials have gradually increased. Since the high energy and strong penetrating ability of neutrons and gamma rays produced by nuclear reactions, they are of great harm to human beings and the environment. Therefore, the research on neutron and gamma radiation shielding materials has become a hot research topic of radiation protection. Rare earth elements have been gradually attracted considerable academic attention, and applied to research and development of neutron and gamma radiation shielding materials owing to their high neutron absorption cross section and high atomic numbers. This paper briefly introduces the application of rare earth materials in radiation shielding materials, and introduces the interaction mechanisms of rare earth elements with neutrons and gamma rays. According to the different types of substrate materials, the rare earth based neutron and gamma composite shielding materials can be divided into three categories: rare earth metal based, rare earth polymer based and rare earth glass based materials. The research progress of these three kinds of rare earth based radiation shielding materials is introduced respectively, and the possible problems and prospects of rare earth materials for neutron and gamma shielding radiation are analyzed.
1 Introduction
2 Interaction of neutron and gamma with rare earth elements
2.1 Interaction of neutron with rare earth elements
2.2 Interaction ofγ-ray with rare earth elements
3 Research progress of rare earth composite shielding materials
3.1 Rare earth metal based composite shielding materials
3.2 Rare earth polymer based composite shielding materials
3.3 Rare earth glass based composite shielding materials
4 Conclusion and outlook
Key words: rare earth; radiation shielding; neutron; gamma
Yidong Lu , Zhipeng Huo , Guoqiang Zhong , Hong Zhang , Liqun Hu . Rare Earth Based Neutron and Gamma Composite Shielding Materials[J]. Progress in Chemistry, 2023 , 35(8) : 1214 -1228 . DOI: 10.7536/PC230109
表3 典型稀土金属基复合屏蔽材料及其性能参数a)Table 3 Typical metal-based rare earth composite shielding materials and their performance parametersa) |
Chemical Composition | Mechanical Property | Shielding Field | Shielding Performance | ref |
---|---|---|---|---|
10 wt% Gd2O3/6061Al | σb: 240; | Neutron | Sn: 99.64 (THK: 10, En: 0.03232) | 52 |
(1 vol% Gd + 15 vol% B4C)/6061 Al | σb: 380 ± 11; σs: 310 ± 8; E: 105 ± 2; δ: 5.0 ± 0.3 | Neutron | Sn: 99.9 (THK: 3, En: 0.025); | 41 41 41 |
20 wt% Gd-Fe | Hν: 588.8 ± 37.9 | Neutron | Sn: 99 (THK: 0.15, En: 0.0253) | 49 |
2.5 wt% Gd2O3/316L | Hν: 270; σs: 247; σuts: 345; δ: 5.5 | Neutron | Sn: 99 (THK: 3, En: 0.025) | 65 65 |
25 wt% Gd2O3/25 wt% W/Al | Hν: 140; σbc: 316 | Neutron | Σt: 125 (En: 0.0253); Sn: 99.9 (THK: 2.5, En: 0.1) | 47 47 |
7.87 wt% Gd2O3/316L alloy | / | Neutron | Sn: 90 (THK: 0.2, En: 0.0253) | 50 |
Gd2O3@W/Al | σs: 310 | Neutron | Sn : 99 (THK: 3, En: 0.0253) | 51 |
a) σb: Tensile stress (MPa); Sn: neutron shielding rate (%); THK: thickness of sample (mm); Hν: vickers hardness (GPa) ; En: incident neutron energy (eV); σs: yield strength (MPa); E: elastic Modulus (GPa); δ: elongation (%);σbc: compressive strength (MPa); Σt: total cross sections (cm-1); σuts: ultimate tensile strength (MPa) |
表4 典型的稀土聚合物基复合屏蔽材料及其性能参数a)Table 4 Typical polymer-based rare earth shielding materials and their performance parameters a) |
Chemical composition | Mechanical property | Shielding field | Shielding performance | ref |
---|---|---|---|---|
11 wt% h-BN/3 wt% Gd2O3/HDPE | σb : 33 ; σk: 330 | Neutron | Σ: 0.3804 ± 0.0112; μ/ρ: 0.1123 ± 0.035; Sn: 67% (THK: 6, En: 4.5 MeV) | 64 |
25 wt% Sm2O3/UHMWPE | σb: 24.9±0.6 ; σk: 156.8 ± 20.9; HS: 68 ± 1 | γ-ray | HVL = 6.7214 (Eγ: 0.712 MeV); μ/ρ: 0.0845 (Eγ: 0.712 MeV) | 67 |
Carbon-fiber/Sm2O3/PI | σb: 200; E: 35 | γ-ray | Sn: 42.4% (THK: 5, Eγ: 0.662 MeV) | 81 |
9.7 wt% nano-Gd2O3/Epoxy | σf: 140; σm : 4.2 | γ-ray | μ/ρ: 0.0826 (356 MeV) | 72 |
11 wt% h-BN/3 wt% Gd2O3/PI | σb : 73 ± 1; δ: 13 | Neutron and γ-ray | Σ: 0.4052; Sn: 90% (THK: 3, En: 4.5 MeV) | 82 |
15 wt% Sm2O3-APTES/ AFG-90H | σb: 28.645 ; σk : 5300 ; δ: 6.8; HS: 83 | Neutron | Sn: 78% (THK: 0.2, En: 0.0253 eV) | 69 |
10 wt% Gd2O3/ 20 wt% B4C/70 wt% HDPE | σk: 1297.9; σb: 19.6; δ: 7.9 | Neutron and γ-ray | Sn: 90% (THK: 9.1, En: 2.45 MeV) Sγ: 70% (THK: 13.7, Eγ: 0.661 MeV) | 66 |
14 vol% Er2O3/Epoxy | — | γ-ray | μ/ρ: 0.073 (Eγ: 0.662 MeV) | 68 |
a) σb: Tensile stress (MPa); σk: tensile Modulus (MPa); δ: elongation at break (%); σf: flexural strength (MPa); σm: flexural modulus (GPa); HVL: half-value layer (cm); Σ: neutron absorption cross-section (cm-1) ; Sn: neutron shielding rate; Sγ: gamma shielding rate; THK: thickness of sample (cm); Eγ: incident gamma photon energy ; En: incident neutron energy ; μ/ρ: mass attenuation coefficient (cm2/g); E: elastic modulus (GPa); HS: shore hardness (HA) |
图8 (a)Gd 17.5玻璃对不同能量伽马射线屏蔽参数的理论值与实验值;(b)WGB玻璃在0.662 MeV伽马光子能量辐照条件下的屏蔽参数;(c)在0.662 MeV伽马光子能量辐照条件下的WGB玻璃和标准屏蔽材料的半值层[97]Fig.8 (a) Theoretical and experimental values of shielding parameters of Gd 17.5 glass at different γ-ray energy; (b) shielding parameters of WGB glass at 0.662 MeV photon energy; (c) half value layer of WGB glass and standard shielding materials at 0.662 MeV photon energy[97]. Copyright 2022, Elsevier |
表5 典型稀土基玻璃屏蔽材料及其性能参数a)Table 5 Typical glass-based rare earth shielding materials and their performance parameters a) |
Glass Sample | Physical property | Shielding field | Shielding performance | ref |
---|---|---|---|---|
S1 | ρ: 4.810 | γ-ray | μ/ρ: 0.0624 (Eγ: 1), HVL: 2.31 (Eγ: 1) | 111 111 |
S2 | ρ: 2.46 ; Hν : 3.37 | γ-ray | HVL: 2.45 (Eγ: 0.356), μ/ρ: 0.1 (Eγ: 0.356) | 91 91 |
S3 | σa : 84.85 ; σb : 64.87 ; σc : 33.1; ρ: 6.260 | γ-ray | Sγ: 99 (THK: 3, Eγ: 0.284); μ/ρ: 0.0996 (Eγ: 0.662), HVL: 1.18 (Eγ: 0.662) | 112 112 112 |
S4 | ρ: 3.77; Vm: 29.468 | γ-ray | HVL: 6 (Eγ: 10) | 94 |
S5 | ρ: 6.259; Vm: 51.6 | γ-ray | HVL: 3 (Eγ: 3) | 113 |
S6 | ρ: 3.26 | γ-ray | HVL: 6.756 (Eγ: 10) | 96 |
S7 | ρ: 5.846 | γ-ray | HVL: 2.1 (Eγ: 1); μ/ρ: 0.054 (Eγ: 1.173) | 101 101 |
S8 | ρ: 2.84 | γ-ray | HVL: 1.319 (Eγ: 0.15); μ/ρ: 1.633 (Eγ: 0.05); μ: 4.12084 (Eγ: 0.05) | 114 114 114 |
S9 | ρ: 6.09; Vm: 51.42 | γ-ray | μ/ρ: 0.2057 (Eγ: 0.356); HVL: 0.552 (Eγ: 0.356) | 90 90 |
S10 | ρ: 6.21 | Neutron and γ-ray | μ/ρ: 0.215 (Eγ: 0.356) ΣR: 0.13992 | 92 92 |
S11 | ρ: 4.57 | Neutron and γ-ray | μ/ρ: 0.0547 ± 0.00212 (Eγ: 0.662) HVL: 2.59 ± 0.052 (Eγ: 0.662) ΣR: 0.032 | 95 95 95 |
S12 | ρ: 5.48; Vm: 37.6 | γ-ray | μ/ρ: 0.090 (Eγ: 0.662) HVL: 1.412 (Eγ: 0.662) | 97 97 |
S13 | ρ: 3.41; Vm: 45.42 | γ-ray | μ/ρ: 0.056 (Eγ: 1.173) HVL: 3.62 (Eγ: 1.173) | 109 109 |
S14 | ρ: 4.1012 ± 0.0001; Vm: 26.3553 ± 0.006 | γ-ray | μ/ρ: 0.08 (Eγ: 0.6) μ: 0.3281 (Eγ: 0.6) | 103 103 |
a) σa: Young’s modulus (GPa); σb: Bulk modulus (GPa); σc: Shear modulus (GPa); Hν: Vickers hardness (GPa); HVL: Half value layer (cm); μ/ρ: Mass attenuation coefficient (cm2/g); μ: Linear attenuation coefficients (cm-1); ΣR: Fast neutron effective removal cross sections (cm-1); ρ: Density (g/cm3); Vm: Molar volume (cm3/mol); Sγ: Gamma shielding rate (%); THK: Thickness of sample (cm); Eγ: Incident gamma photon energy (MeV). | |
Sample: S1: 60 mol%B2O3-15 mol%WO3-25 mol%La2O3; S2: 2 wt%CeO2-Sodium borate glass; S3: 39H3BO3+30PbO+20BaO+10Bi2O3+1Dy2O3; S4: 59.4 mol%ZnO-39.6 mol%B2O3-1 mol% Eu2O3; S5: YBBiOLa2; S6: 69.95 mol%H3BO3-5 mol%Bi2O3-10 mol%BaCO3-7.5 mol%CaF2-7.5 mol%ZnO-0.05 mol%Yb2O3. S7: 0.1 mol%Sm2O3-60 mol%TeO2-39.9 mol%ZnO; S8: 36.4 wt%Y2O3-1.6 wt%Al2O3-61.9 wt%P2O5; S9: Al0.08B0.6Bi1.8O3Y0.04; S10: 2.5 mol%CeO2-20 mol%BaO-17.5 mol%Bi2O3-60 mol%B2O3; S11: 7.5 mol%Eu2O3-47.5 mol%B2O3-10 mol%CaO-10 mol%SiO2-25 mol%Bi2O3; S12: 17.5 mol%Gd2O3-52.5 mol%WO3-30 mol%B2O3; S13: 4 mol%Gd2O3-36 mol%BaO-60 mol%P2O5; S14: 50 mol%TeO2-30 mol%B2O3-19 mol%Li2O-1 mol%CeO2. |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
(昝宇宁. 中国科学技术大学博士论文, 2020.).
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
(陈威. 南京航空航天大学硕士论文, 2017.).
|
[14] |
(廖益传. 中国工程物理研究院博士论文, 2018.).
|
[15] |
|
[16] |
(杨新异. 中国科学技术大学博士论文, 2022. ).
|
[17] |
|
[18] |
(赵盛. 中国科学技术大学硕士论文, 2021.).
|
[19] |
|
[20] |
|
[21] |
(周玉超. 哈尔滨工业大学硕士论文, 2019.).
|
[22] |
(李佳乐. 西南科技大学硕士论文, 2021.).
|
[23] |
(元琳琳. 北京科技大学博士论文, 2016.).
|
[24] |
|
[25] |
(贾夏冰. 西南科技大学硕士论文, 2016.).
|
[26] |
|
[27] |
|
[28] |
(刘立苹. 西南科技大学硕士论文, 2018.).
|
[29] |
(赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 功能材料, 2021, 52(3): 3001.).
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
(赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 高等学校化学学报, 2022, 43(6): 20220039.).
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
(罗庆. 西南科技大学硕士论文, 2017.).
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
/
〈 |
|
〉 |