Home Journals Progress in Chemistry
Progress in Chemistry

Abbreviation (ISO4): Prog Chem      Editor in chief: Jincai ZHAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
Microplastics Special Issue

Interaction Between Microplastics and Antibiotics in Aquatic Environments and the Characteristics of Composite Pollution Removal by Coagulation and Advanced Oxidation Methods

  • Mianmo Li 1 ,
  • Minghao Sui , 1, 2, *
Expand
  • 1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • 2 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

Received date: 2024-07-04

  Revised date: 2024-10-31

  Online published: 2024-10-31

Supported by

National Natural Science Foundation of China(2019YFC0408801)

Abstract

As public concern regarding the safety of drinking water continues growing, microplastics and antibiotics have emerged as new contaminants of interest within the field of water treatment. Microplastics and antibiotics not only pollute aquatic environments and endanger both aquatic life and human health, but their coexistence in water can also lead to physical and chemical interactions, such as adsorption. These interactions are influenced by various factors, including the morphology, functional groups, and aging degree of microplastics, as well as the pH, temperature, salinity, heavy metal ions, and organic macromolecules in the water. The resulting microplastic-antibiotic complex pollutants exhibit greater toxicity and are more challenging to remove. This review discusses the hazards of microplastics and antibiotics in water, their interaction mechanisms, and influencing factors. It also highlights the removal characteristics of complex pollutants using two typical water treatment technologies: coagulation and advanced oxidation. The principles and degradation effects of these treatment processes are analyzed in detail.

Contents

1 Introduction

2 Hazards of microplastic-antibiotic composite pollutants

3 Mechanisms of interaction between microplastics and antibiotics

4 Factors influencing the interaction between micro- plastics and antibiotics

5 Coagulation removal of microplastic-antibiotic composite pollution

6 Advanced oxidation degradation of microplastic- antibiotic composite pollution

7 Conclusion and outlook

Cite this article

Mianmo Li , Minghao Sui . Interaction Between Microplastics and Antibiotics in Aquatic Environments and the Characteristics of Composite Pollution Removal by Coagulation and Advanced Oxidation Methods[J]. Progress in Chemistry, 2025 , 37(1) : 124 -132 . DOI: 10.7536/PC240617

1

[1][2][2-3][4][5][6]

Table 1 Distribution of microplastics in several freshwater environments

Sampling area Mean abundance/per m3 Principal components Particle size /mm Shape Ref
Yangtze River 4483 PE(27%)
PP(26%)
0~0.5 Fibrous (54.63%) Fragmented
(32.43%)
7
Songhua River (5.72±4.02)×103 PE, PET, PS 0~1 Fibrous (34.69%)
Fragmented
(26.29%)
8
East Lake,Hubei 3329.19 ± 2059.26 PE, PP 0.1~1 Fibrous (84.0%)
Fragmented (12.6%)
9
Wei River (3.67~10.7)×103 PE, PVC, PS 0~0.5 Fibrous (50.1%) 10
Taihu Lake (7.33±1.70)×103 PET(53.4%) 0.1~0.5 Fibrous (92.9%) 11
[12][13][14][15][16][17][18][19]
[20][21][22][23]
[24][25]

2

[26][27][28][29][30]
[31]+ /K +[32]

3

[33][34][35]
[36][37]KdKd[38][39]Kd
[40]KaPZC[41][42]KaPZC
[43][44][45][46][47]

Fig. 1 The adsorption mechanism between certain microplastics and antibiotics

4

[48][39]
[49][50]
[51][52][53]
[47][54][55]
[56][57][58]
[59][60][61][62]

5

[63][64][65][66]
[66]

Fig. 2 The coagulation mechanism of PE and NOR removal in single and composite systems[66]. Copyright 2022,Elsevier

2+2+[67]

6

[68]
2+2O2[69]2+3+[70][71]nn
e-h+2•−[72]

Fig. 3 The photocatalytic degradation of microplastics and antibiotics

2[73]22[74]2S2O82[75]2O222O2
[76]
[76]
4•−4•−[77][78]2O4/Co3O4[79]2O42O42O4[80]

7

[1]
Thompson R C, Olsen Y, Mitchell R P, Davis A, Rowland S J, John A W, McGonigle D, Russell A E. Science, 2004, 304(5672): 838.

[2]
Yang S B, Xie J, Wei L T. Qin H. Environmental Science and Management, 2023, 48(8): 132.

[3]
Chen X X, Liu M. Chen Y. Chemical Industry and Engineering Progress, 2020, 39(8): 3333.

[4]
Rodrigues M O, Abrantes N, Goncalves F J M, Nogueira H, Marques J C, Goncalves A M M. Sci. Total Environ., 2018, 633: 1549.

[5]
Tong H Y, Jiang Q Y, Hu X S, Zhong X C. Chemosphere, 2020, 252: 126493.

[6]
Chia R W, Lee J Y, Kim H, Jang J. Environ. Chem. Lett., 2021, 19(6): 4211.

[7]
Li S Q, Wang H, Chu L Y, Zeng Y C, Yan Y T. Environmental Science, 2024, 45(03): 1439.

[8]
Tang S Y. Doctoral Dissertation of Jilin University. 2023.

(唐抒圆, 吉林大学博士论文, 2023. )

[9]
Shi M M, Zhu J X, Hu T P, Xu A, Mao Y, Liu L, Zhang Y, She Z P, Li P, Qi S H, Xing X L. Chemosphere, 2023, 316: 137864.

[10]
Ding L, Mao R F, Guo X T, Yang X M, Zhang Q, Yang C. Sci. Total Environ., 2019, 667: 427.

[11]
Lu J W. Doctoral Dissertation of Donghua University. 2023.

(陆嘉玮, 东华大学博士论文, 2023. )

[12]
Muhib M I, Uddin M K, Rahman M M, Malafaia G. Sci. Total Environ., 2022, 865: 161274.

[13]
Li W P, Wang L Q, Yan W W, Zhang H, Jia Y. City and Town Water Supply, 2023, 03: 72.

[14]
Chowdhury S R, Razzak S A, Hassan I, Hossain S M Z, Hossain M M. Water Air Soil Pollut., 2023, 234(11): 673.

[15]
Powell J J, Thoree V, Pele L C. Br J Nutr., 2007, 98 (Suppl 1): S59.

[16]
Bouwmeester H, Hollman P C, Peters R J. Environ. Sci. Technol., 2015, 49(15): 8932.

[17]
Avio C G, Gorbi S, Milan M, Benedetti M, Fattorini D, d'Errico G, Pauletto M, Bargelloni L, Regoli F. Environ. Pollut., 2015, 198: 211.

[18]
Rochman C M, Kurobe T, Flores I, Teh S J. Sci. Total Environ., 2014, 493: 656.

[19]
Bakir A, Rowland S J, Thompson R C. Environ. Pollut., 2014, 185: 16.

[20]
Liu X, Wang Z, Wang X L, Li Z, Yang C, Li E H, Wei H M. Environmental Science, 2019, 40(05): 2094.

[21]
Chen L H, Cao Y, Li Q, Meng T, Zhang S. Environmental Science, 2023, 44(12): 6894.

[22]
Xu X R, Li X Y. Chemosphere, 2010, 78(4): 430.

[23]
Xu Y G, Yu W T, Ma Q, Zhou Y, Jiang C M. Asian Journal of Ecotoxicology, 2015, 10(3): 11.

[24]
Li J W, Liu X Y, Wang M H, Liu S, Yu L H, Ren M Z, Zhuang X. Guangzhou Chemical Industry, 2016, 44(17): 10.

[25]
Liu H, Yang Y K, Ge Y H, Zhao L, Long S, Zhang R C. Bioresour. Technol., 2016, 222: 114.

[26]
Zhang T, Jiang B, Xing Y, Ya H B, Lv M J, Wang X. Environ. Sci. Pollut. Res. Int., 2022, 29(12): 16830.

[27]
Wang Y H, Yang Y N, Liu X, Zhao J, Liu R H, Xing B S. Environ. Sci. Technol., 2021, 55(23): 15579.

[28]
Fonte E, Ferreira P, Guilhermino L. Aquat. Toxicol., 2016, 180: 173.

[29]
Abdurahman A, Li S C, Li Y J, Song X F, Gao R. Environ. Sci. Pollut. Res. Int., 2023, 30(60): 125370.

[30]
Zhang Y X, Lu J, Wu J, Wang J H, Luo Y M. Ecotoxicol. Environ. Saf., 2020, 187: 109852.

[31]
Zhang P, Lu G H, Sun Y, Zhang J Q, Liu J C, Yan Z H. Environ. Int., 2022, 169: 107540.

[32]
Han Y, Zhou W S, Tang Y, Shi W, Shao Y Q, Ren P, Zhang J M, Xiao G Q, Sun H X, Liu G X. Sci. Total Environ., 2021, 770: 145273.

[33]
Zhuang S T, Wang J L. Sci. Total Environ., 2023, 897: 165414.

[34]
Guo X Y, Wang X L, Zhou X Z, Kong X Z, Tao S, Xing B S. Environ. Sci. Technol., 2012, 46(13): 7252.

[35]
Wei X X, Li M, Wang Y F, Jin L M, Ma G C, Yu H Y. Molecules, 2019, 24(9): 1784.

[36]
Atugoda T, Wijesekara H, Werellagama D R I B, Jinadasa K B S N, Bolan N S, Vithanage M. Environ. Technol. Innov., 2020, 19: 100971.

[37]
Torres F G, Dioses-Salinas D C, Pizarro-Ortega C I, De-la-Torre G E. Sci. Total Environ., 2021, 757: 143875.

[38]
Wang Y F, Li M, Yu Hai Y, Ma G C, Wei X X. Asian Journal of Ecotoxicology, 2019, 14(4): 23.

[39]
Li J, Zhang K, Zhang H. Environ. Pollut., 2018, 237: 460.

[40]
Tourinho P S, Kočí V, Loureiro S, van Gestel C A M. Environ. Pollut., 2019, 252: 1246.

[41]
Stapleton M J, Ansari A J, Hai F I. Water Res., 2023, 233: 119790.

[42]
Razanajatovo R M, Ding J, Zhang S, Jiang H, Zou H. Mar. Pollut. Bull., 2018, 136: 516.

[43]
Hüffer T, Weniger A-K, Hofmann T. Environ. Pollut., 2018, 236: 218.

[44]
Guo X, Liu Y, Wang J L. Mar. Pollut. Bull., 2019, 145: 547.

[45]
Sun M, Yang Y K, Huang M L, Fu S K, Hao Y Y, Hu S Y, Lai D L, Zhao L. Sci. Total Environ., 2022, 807: 151042.

[46]
Liu G Z, Zhu Z L, Yang Y X, Sun Y R, Yu F, Ma J. Environ. Pollut., 2019, 246: 26.

[47]
Zhang H, Liu F F, Wang S C, Huang T Y, Li M R, Zhu Z L, Liu G Z. Environ. Pollut., 2020, 262: 114347.

[48]
Guo X T, Pang J W, Chen S Y, Jia H Z. Chemosphere, 2018, 209: 240.

[49]
Zhang X J, Zheng M G, Yin X C, Wang L, Lou Y H, Qu L Y, Liu X W, Zhu H H, Qiu Y. Mar. Pollut. Bull., 2019, 138: 458.

[50]
Yu F, Yang C F, Huang G Q, Zhou T, Zhao Y C, Ma J. Sci. Total Environ., 2020, 721: 137729.

[51]
Bandow N, Will V, Wachtendorf V, Simon F-G. Environ. Chem., 2017, 14: 394.

[52]
Wang Y, Wang X J, Li Y, Li J, Liu Y Y, Xia S Q, Zhao J F. Chem. Eng. J., 2021, 404: 126412.

[53]
Müller A, Becker R, Dorgerloh U, Simon F-G, Braun U. Environ. Pollut., 2018, 240: 639.

[54]
Puckowski A, Cwięk W, Mioduszewska K, Stepnowski P, Białk-Bielińska A. Chemosphere, 2021, 263: 127976.

[55]
Chen Y J, Li J N, Wang F H, Yang H, Liu L. Chemosphere, 2021, 265: 129133.

[56]
Chen S Y, Guo X T, Pang J W. China Environmental Science, 2018, 38(05): 1905.

[57]
Aristilde L, Marichal C, Miéhé-Brendlé J, Lanson B, Charlet L. Environ. Sci. Technol., 2010, 44(20): 7839.

[58]
Zhang H B, Wang J Q, Zhou B Y, Zhou Y, Dai Z F, Zhou Q, Chriestie P, Luo Y M. Environ. Pollut., 2018, 243(Pt B): 1550.

[59]
Tu C, Chen T, Zhou Q, Liu Y, Wei J, Waniek J J, Luo Y. Sci. Total Environ., 2020, 734: 139237.

[60]
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C X. Eco-Environment & Health, 2024, 3(4):516.

[61]
Wu Z Z, Guo Z, Dong D Z, Wu F Y, Li J, Yang X. Journal of Environmental Chemical Engineering, 2023, 11(6): 111143.

[62]
Zheng Z, Huang Y, Liu L, Wang L, Tang J. J. Hazard. Mater., 2023, 459: 132099.

[63]
Zhou G Y, Wang Q G, Li J, Li Q S, Xu H, Ye Q, Wang Y Q, Shu S H, Zhang J. Sci. Total Environ., 2021, 752: 141837.

[64]
Rajala K, Grönfors O, Hesampour M, Mikola A. Water Res., 2020, 183: 116045.

[65]
Lu S, Liu L B, Yang Q X, Demissie H, Jiao R Y, An G Y, Wang D S. Sci. Total Environ., 2021, 786: 147508.

[66]
He J S, Zhang Y, Ni F, Tian D, Zhang Y Z, Long L L, He Y, Chen C, Zou J M. Sci. Total Environ., 2022, 831: 154826.

[67]
Lapointe M, Farner J M, Hernandez L M, Tufenkji N. Environ. Sci. Technol., 2020, 54(14): 8719.

[68]
Zhu Z S, Yu X J, Qu J, Jing Y Q, Abdelkrim Y, Yu Z Z. Appl. Catal., B, 2020, 261: 118238.

[69]
Furia F, Minella M, Gosetti F, Turci F, Sabatino R, Di Cesare A, Corno G, Vione D. Chemosphere, 2021, 283: 131170.

[70]
Liu Y, Zhao Y, Wang J L. J. Hazard. Mater., 2021, 404(Pt B): 124191.

[71]
Yao J J, Doctoral Dissertation of Central South University. 2022.

(姚晶晶, 中南大学博士论文, 2022.)

[72]
Zhao L, Deng J H, Sun P Z, Liu J S, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y H. Sci. Total Environ., 2018, 627: 1253.

[73]
Nabi I, Bacha A-U-R, Li K, Cheng H, Wang T, Liu Y, Ajmal S, Yang Y, Feng Y, Zhang L. iScience, 2020, 23(7): 101326.

[74]
Fu Y M, Wang Y P, Wang X L, Wu J F, Guo Y F, Kang H Y. Industrial Water Treatment, 2017, 37(4): 47.

[75]
Ye H. Water Purification Technology, 2022, 41(10): 43.

[76]
Jiang R R, Lu G H, Zhang L B, Chen Y F, Liu J C, Yan Z H, Xie H J. J. Hazard. Mater., 2024, 463: 132887.

[77]
Zhao G Q, Zou J, Chen X Q, Liu L K, Wang Y K, Zhou S, Long X Q, Yu J G, Jiao F P. Chem. Eng. J., 2021, 421: 127845.

[78]
Zhu T, Jiang J P, Wang J S, Zhang Z N, Zhang J, Chang J. Journal of Environmental Management, 2022, 313: 114855.

[79]
Wei C N, Master's Dissertation of Chongqing Jiaotong University. 2023.

(韦采妮, 重庆交通大学硕士论文, 2023. )

[80]
Ortiz D, Munoz M, Nieto-Sandoval J, Romera-Castillo C, de Pedro Z M, Casas J A. Chemosphere, 2022, 309: 136809.

Outlines

/