Latest Research Progress in Applications of HKUST-1 and HKUST-1 Based Composites
Received date: 2024-05-31
Revised date: 2024-09-13
Online published: 2024-11-15
Supported by
National Natural Science Foundation of China(52073086)
Natural Science Foundation of Hunan(2024JJ7164)
Natural Science Foundation of Hunan(2023JJ60447)
Postgraduate Scientific Research Innovation Project of Hunan Province(CX20240908)
Scientific Research and Innovation Foundation of Hunan University(CX2413)
Due to HKUST-1 has ultra-high specific surface area and porosity,excellent thermal stability,and adjustable structure and function,HKUST-1 is one of the most widely studied MOFs. The HKUST-1-based composites have achieved excellent multi-component properties and demonstrated new physical and chemical properties,which have a significant impact on their applications. The structural characteristics and physicochemical properties of HKUST-1 and HKUST-1-based composites make them have broad application prospects in gas storage,gas adsorption,catalysis,drug delivery and release sensing and photodegradation. This article focuses on the application progress of HKUST-1 and HKUST-1-based composites in various fields in recent years,and finally looks forward to the research on HKUST-1-based composites.
Contents
1 Introduction
1.1 Introduction to HKSUT-1
1.2 Introduction to HKSUT-1 based composite
2 Progress in applications of HKSUT-1 and HKUST-1 based composites
2.1 Gas storage
2.2 Gas adsorption
2.3 Catalysis
2.4 Drug delivery and release
2.5 Sensor
2.6 Photodegradation
2.7 The influence of structure on properties and applications
3 Conclusion and outlook
Key words: HKUST-1; composites; application progress
Saiqun Nie , Pengcheng Xiao , Jiayao Chen , Fuli Luo , Tian Zhao , Yi Chen . Latest Research Progress in Applications of HKUST-1 and HKUST-1 Based Composites[J]. Progress in Chemistry, 2025 , 37(4) : 621 -638 . DOI: 10.7536/PC240523
表1 不同合成方法制备HKUST-1的研究进展Table 1 Summary of studies on the synthesis of HKUST-1 different synthesis methods |
Method | Synthesis conditions | Textural properties | |||||
---|---|---|---|---|---|---|---|
Time (h) | Temp (℃) | Yield (%) | SBET (m2·g-1) | Vpore (cm3·g-1) | Particle Size (nm) | Ref | |
Solvothermal | 25.0 | 358 | / | 830 | 0.43 | 1.0 | 44 |
24.0 | 85 | / | 1370 | 0.57 | 1.7 | 45 | |
0.2 | 140 | 96.0 | 5 | / | 29.0 ±83.0 | 9 | |
10.0 | 100 | / | 784 | 0.42 | 2.1 | 46 | |
55.0 | 25 | / | 1357 | 0.70 | 3.8 | 47 | |
24.5 | 120 | / | 982 | 0.52 | 2.1 | 48 | |
48.3 | 75 | 80.0 | 551 | 0.36 | / | 11 | |
24.3 | 120 | / | 1176 | 0.76 | 2.6 | 49 | |
Microwave-assisted | 0.1 | / | 90.0 | 1782 | 0.76 | 290.0 | 50 |
52.0 | 80 | / | 749 | 0.47 | 25.0~30.0 | 51 | |
Ultrasonic | 96.0 | 25 | 84.5 | / | / | 80.0 | 52 |
Electrochemical | 5.7 | 25 | 80.0 | 1474 | 0.62 | 1.7 | 53 |
10.0 | 25 | / | 1303 | 0.64 | / | 54 | |
Sol-Gel | 12.0 | 120 | / | 1552 | 0.63 | 20.0 | 55 |
5.0 | 100 | 95.5 | 1484 | 0.88 | / | 56 | |
Mechanochemical | 24.0 | 25 | 24.9 | 1464 | 0.74 | 0.4~1.0 | 57 |
96.0 | 25 | 76.1 | 359 | / | 130.0 | 52 | |
72.5 | 25 | 80.0 | 1800 | / | / | 58 |
表2 HKUST-1和HKUST-1基复合材料的气体储存总结Table 2 Summary of gas storage for HKUST-1 and HKUST-1 based composites |
Material | Stored gas | Temp (K) | Pressure (bar) | Storage capacity | Ref |
---|---|---|---|---|---|
HKUST-1@GO | CH4 | 265 | 1 | 38 mmol·g-1 | 78 |
HKUST-1 | CH4 | 258 | 80 | 88 mmol·g-1 | 79 |
PC-HKUST-1 NFs | CH4 | 298 | 35 | 86 cm3·g-1 | 77 |
HKUST-1 | Ne | 77 | 49.43 | 22 mmol·g-1 | 80 |
H-HKUST-1-A1 | CH4 | 298 | 30 | 97 mg·g-1 | 81 |
HKUST-1 | CH4 | 298 | 35 | 105 g·kg-1 | 81 |
Li-d-HKUST-1 | H2 | 77 | 1 | 3 wt% | 82 |
表3 HKUST-1和HKUST-1基复合材料的气体吸附性能表Table 3 Summary of gas adsorption for HKUST-1 and HKUST-1 based composites |
Adsorbent | Temp (K) | Pressure (bar) | Adsorbate | Uptake (mmol·g-1) | Ref |
---|---|---|---|---|---|
HKUST-1/ANF | 298 | 1.0 | CO2 | 7.3 | 90 |
KTA@HKUST-1 | 298 | 1.0 | CO2 | 3.5 | 92 |
HKUST-1@BNNS | 298 | 0.002 | VOCs | 4.9 | 94 |
HK@GDY/CMC-B | 298 | / | AH | 11.0 | 95 |
[Bmim][Ac]@HKUST-1 | 313 | 10.0 | CO2 | 10.0 | 100 |
HKUST-1@APTMS-SBA-15 | 298 | 1.0 | CO2 | 4.9 | 101 |
HKUST-1@UV-GO | 273 | 1.0 | CO2 | 9.5 | 102 |
HKUST-1/GO | 423 | / | H2S | 2.1 | 103 |
HKUST-1@OMC | 298 | 0.9 | CO2 | 4.0 | 104 |
N2 | 0.3 | ||||
JUC-220 | 273 | 0.05 | C3H8 | 3.0 | 105 |
0.1 | C2H6 | 2.8 | |||
HKUST-1 | 303 | 52.0 | CO2 | 12.0 | 106 |
18.0~50.0 | CH4 | 2.5~4.0 | |||
15.0~50.0 | H2 | 0.4~0.8 | |||
HKUST-1 | 298 | 1.0 | NH3 | 14.2 | 107 |
HKUST-1/GL-NH2 | 298 | 0~50.0 | CO2 | 14.8 | 108 |
0~15.0 | CH4 | 11.2 |
表4 HKUST-1和HKUST-1基复合材料的电催化性能表Table 4 Summary of electrocatalytic for HKUST-1 and HKUST-1 based composites |
Electrocatalysts | Synthesis method | Catalytic reaction | Electrolyte | Tafel slope (mV·dec-1) | Overpotential (mV) | Ref |
---|---|---|---|---|---|---|
HRBNU-2 | one-step aqueous solution method | HER | 1.0 M KOH | 76.90 | 192.98 | 64 |
OER | 1.0 M KOH | 65.40 | 405.38 | |||
Cu@Cu(OH)2/HKUST-1 | in-situ grow method | OER | 1.0 M KOH | 167.54 | 310 | 113 |
{Cu2SiW12O40}@HKUST-1 | one-step solution method | OER | 1.0 M KOH | 73 | 340 | 119 |
HKUST-1@ZIF-67 | solvothermal method and pyrolysis | HER | 0.5 M H2SO4 | 67 | 169 | 120 |
Cu2-xS/CNF | thermal transformation | HER | 1.0 M KOH | 59 | 276 | 121 |
CoMn-LDH@CuO/Cu2O | calcination | OER | 1.0 M KOH | 89 | 297 | 122 |
Cu3P/C-300 | direct phosphorization at elevated temperatures | HER | 1.0 M KOH | 91 | 233 | 123 |
H Pb11 | replacing | CO2RR | 0.5 M KHCO3 | 47.2% | 124 |
图5 (a) O-HKUST-1,(b) HF-HKUST-1,(c) F-HKUST-1的扫描电镜图;(d) O-HKUST-1,(e) HF-HKUST-1,(f) F-HKUST-1的透射电镜图;(g) 分离O-HKUST-1、HF-HKUST-1和F-HKUST-1后制备的溶菌酶溶液和浓度为5 mg·mL-1的溶菌酶溶液的紫外-可见光谱(插图为溶菌酶的结构);(h) 分离O-HKUST-1、HF-HKUST-1和F-HKUST-1后制备的辣根过氧化物酶溶液和浓度为1 mg·mL-1的辣根过氧化物酶溶液的紫外-可见光谱(插图为辣根过氧化物酶的结构)[59]Fig.5 SEM images of (a) O-HKUST-1,(b) HF-HKUST-1,(c) F-HKUST-1;TEM images of (d) O-HKUST-1,(e) HF-HKUST-1,(f) F-HKUST-1;(g) UV-vis spectra of the prepared lysozyme solution at a concentration of 5 mg·mL-1 and the supernatants after the separation of O-HKUST-1,HF-HKUST-1 and F-HKUST-1;(Inset) The structure of the lysozyme;(h) UV-vis spectra of the prepared horseradish peroxidase solution at a concentration of 1 mg·mL-1 and the supernatants after the separation of O-HKUST-1,HF-HKUST-1 and F-HKUST-1;(Inset) The structure of the horseradish peroxidase[59]. Copyright 2023,American Chemical Society |
表5 HKUST-1和HKUST-1基复合材料的药物递送与释放性能表Table 5 Summary of drug delivery and release for HKUST-1 and HKUST-1 based composites |
Materials | Synthesis methods | Drugs | Performance | Ref |
---|---|---|---|---|
5-FU@HKUST-1/PU | solvothermal | 5-fluorouracil | loading 15 wt% | 66 |
L/HKUST-1 | one-pot | IBU | Release IBU rate to 67% at 8 h | 143 |
TCN@HKUST-1 | solvothermal | tetracycline hydrate | loading 54.90 wt% | 133 |
CMC/Cu-MOF@IBU | solvothermal | IBU | release IBU rate to 81% at 10 h | 149 |
NO@HKUST-1 | electrospinning | NO | an average release rate of 1.74 nmol L-1 h-1 for more than 14 days | 150 |
HKUST-1-GO | hydrothermal | IBU | release drugs rate of about 60% within 20 h | 151 |
ketoprofen | ||||
HKUST-1 | solvothermal | ibuprofen/anethole/guaiacol | 0.34 g·g-1/ 0.38 g·g-1/ 0.40 g·g-1 | 152 |
表6 HKUST-1和HKUST-1基复合材料的传感性能表Table 6 Summary of sensors for HKUST-1 and HKUST-1 based composites |
Materials | Types | Applications | Range of detection (μM) | Detection limit (μM) | Ref |
---|---|---|---|---|---|
HKUST-1/GONRs/GCE | electrochemical Sensor | detection Imatinib | 0.04~1.0/1.0~80 | 0.006 | 160 |
CDs@HKUST-1 | electrochemiluminescence sensor | detection catechol | 5.0×10-3~25 | 3.8×10-3 | 165 |
CuOx@mC | electrochemiluminescence sensor | glyphosate | 1.0×10-9~1.0 × 102 | 7.69 × 10-10 | 167 |
HKUST-1@(RGO-MWCNT) | electrochemical Sensor | detection salvianic acid a drug | 20~4.6×103 | 81/8.1×10-2 | 168 |
CuO/Cu2O@CuO/Cu2O | electrochemical Sensor | detection nonenzymatic glucose | 0.99~1.33×103 | 0.48 | 169 |
HKUST-1/ITO | electrochemiluminescence sensor | detection ascorbic acid | 10~2.5×104/2.5×104~2.65×104 | 3 | 170 |
HKUST-1(Cu)/BAs/PBSM | surface-enhanced Raman scattering sensor | detection ethephon | 6.92×10-3~69.2 | 9.62×10-4 | 171 |
Au@HKUST-1/PTC-Cys | electrochemiluminescence | kanamycin | 1.0×10-7~1.0×10-2 | 4.2×10-8 | 172 |
HKUST-1@MIPs | electrochemiluminescence sensor | detection carbendazim | 0.01~50 | 2×10-3 | 173 |
CdS QDs@HKUST-1/MWCNTs | electrochemiluminescence | catechol | 0.1~1×103 | 3.8×10-2 | 174 |
HKUST-1/PTC-PEI | electrochemiluminescence | ractopamine | 1.0×10-6~10 | 6.17×10-7 | 175 |
Cu3[P2W18O62]@HKUST-1 | electrochemical Sensor | detection H2O2 | 0.5~0.3×103 | 0.17 | 176 |
表7 HKUST-1和HKUST-1基复合材料光降解性能对比表Table 7 Summary of photodegradation for HKUST-1 and HKUST-1 based composites |
Materials | Synthesis method | Simulated pollutants | Degradation efficiency (%) | Cycles | Ref. |
---|---|---|---|---|---|
Ce/Eu-HKUST-1 | solvothermal | malathion | 99.99 | 5 | 69 |
SnO2/MOF-199 | one-step reaction | metronidazole | 81.00 | 6 | 70 |
Cu2O@HKUST-1 | in-situ converted strategy | TC-HCl | 93.40 | 4 | 187 |
g-C3N4/HKUST-1 | hydrothermal | ciprofloxacin | 99.99 | 4 | 188 |
RhB | 99.99 | 4 | |||
BaTi0.85Zr0.15O3/MOF-199 | one-pot | TC | 90.24 | / | 189 |
HKUST-1-P-300 | hydrothermal | phenol | 99.80 | 4 | 190 |
BR14@HKUST-1 | solvothermal | RB13 | 74.17 | 4 | 191 |
HKUST-1/PMS/Vis | solvothermal | MB | 95.00 | / | 192 |
RhB | 95.00 | 4 | |||
Cu2O@HKUST-1 | in-situ converted strategy | TC-HCl | 95.35 | 4 | 193 |
HKUST-1/g-C3N4 | ultrasonic | RhB | 94.42 | 4 | 194 |
NCFOH/HKUS-T | coprecipitation | RO5 | 98.00 | / | 195 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
[132] |
|
[133] |
|
[134] |
|
[135] |
(赵田, 朱和鑫, 董茗, 赵熠. 无机化学学报, 2021, 37(1): 103.).
|
[136] |
|
[137] |
|
[138] |
(赵田,
|
[139] |
(罗明亮, 邹敏敏, 朱和鑫, 董茗, 赵田. 包装学报, 2023, 15(1): 46.).
|
[140] |
|
[141] |
Zirak Hassan Kiadeh S,
|
[142] |
|
[143] |
|
[144] |
|
[145] |
|
[146] |
|
[147] |
|
[148] |
|
[149] |
|
[150] |
|
[151] |
|
[152] |
|
[153] |
|
[154] |
|
[155] |
|
[156] |
|
[157] |
|
[158] |
|
[159] |
|
[160] |
|
[161] |
|
[162] |
|
[163] |
|
[164] |
|
[165] |
|
[166] |
|
[167] |
|
[168] |
|
[169] |
|
[170] |
|
[171] |
|
[172] |
|
[173] |
|
[174] |
|
[175] |
|
[176] |
|
[177] |
|
[178] |
|
[179] |
|
[180] |
|
[181] |
|
[182] |
|
[183] |
|
[184] |
|
[185] |
|
[186] |
|
[187] |
|
[188] |
|
[189] |
|
[190] |
|
[191] |
|
[192] |
|
[193] |
|
[194] |
|
[195] |
|
[196] |
|
[197] |
|
[198] |
|
[199] |
|
[200] |
|
[201] |
|
[202] |
|
[203] |
|
[204] |
|
[205] |
|
[206] |
|
[207] |
|
[208] |
|
[209] |
|
[210] |
|
[211] |
|
[212] |
|
[213] |
|
[214] |
|
[215] |
|
[216] |
|
[217] |
|
[218] |
|
[219] |
|
[220] |
|
[221] |
|
[222] |
|
/
〈 |
|
〉 |