Preparation of Covalent Organic Framework Membranes by Interfacial Polymerization
Received date: 2024-07-10
Revised date: 2024-09-30
Online published: 2025-04-30
Supported by
Hunan province Funds for Distinguished Young Scientists(No. 2022JJ10080),the National Science Foundation of China(52103275)
Hunan province Funds for Distinguished Young Scientists(No. 2022JJ10080),the National Science Foundation of China(52173212)
In recent years,covalent organic frameworks(COFs)have emerged as focal points in the research of membrane materials. Distinguished by their distinctive porous structures and structural versatility,COFs offer a promising avenue for advancement in membrane applications compared to conventional polymeric materials. This article delves into diverse interfacial systems,systematically detailing the methodologies for fabricating high-performance COF membranes via interfacial polymerization. The mechanisms underlying membrane formation across various interfacial systems and the strategies for precisely controlling the membrane structure will be elucidated. Furthermore,the intricate relationship between the membrane structure and application performance will be summarized. The challenges and perspectives in this field will be highlighted in the last part of this review.
1 Introduction
2 Gas/liquid interface polymerization
2.1 Langmuir-Blodgett method
2.2 Surfactant-mediated
3 Liquid/liquid interface polymerization
3.1 Regulation of the system
3.2 Additive-mediated
3.3 Optimizing synthetic conditions
4 Liquid/solid interface polymerization
5 Solid/gas interface polymerization
6 Applications of COF membrane
6.1 Water resource treatment
6.2 Gas separation and storage
6.3 Membrane catalysis
6.4 Electric device
7 Conclusion and outlook
Jiansong Liu , Guida Pan , Feng Zhang , Wei Gao , Juntao Tang , Guipeng Yu . Preparation of Covalent Organic Framework Membranes by Interfacial Polymerization[J]. Progress in Chemistry, 2025 , 37(5) : 686 -697 . DOI: 10.7536/PC240705
表1 气/液界面聚合制备的各COF膜Table 1 Each COF membrane prepared by gas/liquid interfacial polymerization |
Membrane Name | Performances | Thickness | SBET(m2/g) | Application | ref |
---|---|---|---|---|---|
TFP-DHF 2DCOF | Cut-off molecular weight of 900 Da | 2.9±0.3 nm | 285 | Molecular sieving | 21 |
Truxene 2DP | Cut-off molecule size of 1.3 nm | 2~3 nm | - | Dye separation | 22 |
COF-2,5-Ph | Single crystal domain size in μm level | 220 nm | - | Thin-film transistor | 26 |
表2 液/液界面聚合制备的COF膜Table 2 COF membranes prepared by liquid/liquid interfacial polymerization |
Membrane Name | Performances | Thickness | SBET (m2/g) | Application | ref |
---|---|---|---|---|---|
TaPa-Py | Membrane of 64 cm2 | 24 nm | 1145 | Nanofiltration | 29 |
t-TpMa-COF | High permeability(H+)of 1015.7 mol·L-1·g-1 | 71 μm | - | Liquid deacidification | 30 |
TFB-BD | Permeability(acetonitrile)of 523 L·m-2·h-1·bar-1 | 2 μm | 1096 | Dye separation | 31 |
COF-DhTG | Rejection(NaCl)of 93.0%-93.6%; Permeability of 1.7~3.7 L·m-2·h-1·bar-1 | 5.3 μm | 24 | Desalination | 32 |
TFB-BD | Dye rejection(RhB)>98.0% | 4 μm | 99.5 | Dye separation | 33 |
Tp-Byp | Permeability(acetonitrile)of 339 L·m-2·h-1·bar-1 | 75 nm | 1151 | Dye separation | 34 |
TAPB-PDA | Pore size of 1.5 nm | 2.5 nm~100 μm | 563 | Nanofiltration | 37 |
COF-JLU2 | Pore size(0.49~0.51 nm) | 50~400 nm | 353 | Nanofiltration | 38 |
3D SCOF | Proton conductivity of 843 mS·cm-1; Power density of 21.2 W·m-2; Selectivity of 0.976 | 1 μm | 49 | Proton conduction | 39 |
Acidamide-COF | Permeability of 482.3 L·m-2·h-1·bar-1; Dye rejection(methylene blue)>99%) | 29.56 μm | 984 | Dye separation | 40 |
COF-MeCN | Permeability of 9.4 L·m-2·h-1·bar-1; Rejection(Na2SO4)of 85% | 115 nm | 610 | Desalination | 44 |
TpPa/PSF | Dye rejection(Congo red)of 99.5%; Permeability of 50 L·m-2·h-1·bar-1 | 500 nm | - | Dye separation | 45 |
TFPM-HZ/PAN | Permeability of 44 L·m-2·h-1·bar-1; Operation time of 1000 h | 250 nm | 1000 | Organic solvent nanofiltration | 46 |
COF-DT | Dye rejection(Alcian bule)of 98.6% | 395 nm | 1546 | Dye separation | 47 |
TAPB-PDA | Permeability(DETHz-Tb)of 0.2 L·m-2·h-1·bar-1 | 70 μm | 1269 | Dye separation | 48 |
TpPa-75-250-2 | Selectivity(NaCl/Adriamycin)of 41.8; Permeability of 48.09 L·m-2·h-1·bar-1 | 78 nm | - | Antibiotic desalination | 49 |
图8 液/固界面聚合的示意图Fig.8 Schematic representation of polymerization at the liquid/solid interface |
表3 液/固界面聚合制备的各COF膜Table 3 Each COF membrane prepared by liquid/solid interface polymerization |
Membrane Name | Performances | Thickness | SBET (m2/g) | Application | ref |
---|---|---|---|---|---|
COFDT | Rejection(NaCl)of 99.99%; Permeability of 220 L·m-2·h-1 | 300~500 nm | 790 | Desalination | 50 |
TaPa | Rejection(NaCl)of 99.96%; Permeability of 92 kg·m-2·h-1 | 85 nm | 252 | Desalination | 51 |
TTA-DHTA | Young's modulus of 25.9±0.6 GPa; | 4~150 nm | - | Ultrafiltration | 52 |
表4 固/气界面聚合制备的各COF膜Table 4 COF membrane prepared by solid/gas interface polymerization |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
(刘祎, 汪明旺, 吕宏凌, 陈金庆. 化工进展, 化工进展, 2021, 40(08): 4360.).
|
[7] |
(朱军勇, 陈田田, 韩双乔, 张亚涛. 郑州大学学报(工学版), 2023, 44(1): 13.).
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
(蘧延庆, 查雨欣, 贾宏葛, 徐双平, 张明宇. 中国塑料, 中国塑料, 2022, 36(11): 150.).
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
/
〈 |
|
〉 |