Preparation and Applications of Chiral Carbon Dots Prepared via Hydrothermal Carbonization Method
Received date: 2023-04-24
Revised date: 2023-08-23
Online published: 2023-09-01
Supported by
National Natural Science Foundation of China(32371808)
National Natural Science Foundation of China(31890773)
National Natural Science Foundation of China(31971601)
As an emerging carbon nanomaterial, chiral carbon dots (CCDs) have the unique photoelectric properties of carbon dots and chiral characteristics, which have good development prospects. The preparation of CCDs by hydrothermal carbonization includes a one-step method based on the chiral transfer strategy and a two-step method based on the chiral inheritance strategy, which exhibited the advantages of easy control of chiral structure, adjustable optical properties, environmental friendliness and excellent water solubility. It has good application effects in the fields of biomedicine, sensing, asymmetric catalysis, optoelectronic materials and composites, and is the most widely used preparation method at present. In this paper, the effects of experimental conditions (source types, hydrothermal conditions) on the chiral characteristics, physical chemical structure, optical properties and electrical properties of CCDs prepared by hydrothermal carbonization are reviewed. The applications of chiral carbon dots are summarized and their future developments are prospected.
1 Introduction
2 Preparation of chiral carbon dots by hydrothermal carbonization
2.1 One-step method based on chiral transfer strategy
2.2 Two-step method based on chiral inheritance strategy
3 Effect of preparation factors on the properties of chiral carbon dots
3.1 Effect of carbon source
3.2 Effect of chiral ligands
3.3 Effect of other source
3.4 Effect of hydrothermal carbonization temperature
3.5 Effect of hydrothermal carbonization time
4 Structural characteristics of chiral carbon dots prepared by hydrothermal carbonization
4.1 Chiral characteristics
4.2 Physical structure
4.3 Chemical structure
4.4 Optical property
4.5 Electrical property
5 Applications of chiral carbon dots prepared by hydrothermal carbonization
5.1 Biomedical
5.2 Sensing
5.3 Asymmetric catalysis
5.4 Photoelectric material
5.5 Composites
6 Conclusion and outlook
Jinyue Fan , Xiangxin Kong , Wei Li , Shouxin Liu . Preparation and Applications of Chiral Carbon Dots Prepared via Hydrothermal Carbonization Method[J]. Progress in Chemistry, 2023 , 35(12) : 1764 -1782 . DOI: 10.7536/PC230422
图1 (A) 以柠檬酸和L-/D-半胱氨酸一步法制备CCDs[46];(B) 以L-/D-半胱氨酸为手性源和碳源合成CCDs[29];(C)以L-/D-色氨酸为手性源和碳源合成CCDs[31];(D) 全彩色CPL发射的CCDs-CsPbX3的制备[59]Fig. 1 (A) Preparation of CCDs via one-step method of citric acid and L-/D-cysteine[46]; (B) Synthesis of CCDs using L-/D-Cysteine as chiral source and carbon source[29];(C)Synthesis of CCDs using L-/D-Tryptophon as chiral source and carbon source[31];(D) Schematic of the preparation procedure for full-color CPL CCDs-CsPbX3[59] |
表1 基于手性传递策略的一步法合成CCDsTable 1 One-step method based on chiral transfer strategy |
Method | Chiral source | Carbon source | Other source | T(℃) | t(h) | EM(nm) | ref |
---|---|---|---|---|---|---|---|
One-step method | L-/D-glutamine | Citric acid | — | 140 | 16 | 450 | 45 |
L-/D-cysteine | Citric acid | — | 180 | 1 | — | 46 | |
L-/D-cysteine | — | NaOH | 120 | 16 | 460 | 29 | |
L-aspartic acid | Citric acid | NaOH | 200 | 4 | 420 | 30 | |
L-cysteine | Citric acid | — | 160 | 6 | 453 | 47 | |
L-cysteine L-glutathione L-phenylglycine L-tryptophan | Citric acid+ ethylenediamine | — | 190 | 8 | 450 | 48 | |
L-/D-tryptophan | — | NaOH | 120 | 16 | 476 | 31,67 | |
L-/D-tryptophan | o-Phenylenediamine | HCl+Ethanol -H2SO4 | 160 | 7 | 441 546 604 | 32 | |
L-/D-cysteine | Urea | — | 180 | 1 | 450 | 49 | |
L-/D-glutamic acid | Citric acid | — | 180 | 4 | 454/418 | 50 | |
D-proline | Citric acid | — | 180 | 2 | 420 | 51 | |
L-/D-alanine | Citric acid | — | 160 | 4 | 400 | 66 | |
L-cysteine | m-Phenylenediamine | — | 200 | 2 | 510 | 52 | |
L-ascorbic acid L-cysteine+L-ascorbic acid | Ethylenediamine Ethylenediamine | — | 100 140 | 2 4 | 484 420 | 67 | |
L-cysteine | Neutral red | Ethanol | 140 | 8 | 601/604 | 75 | |
L-/D-tryptophan | OTD | H2SO4 | 160 | 8 | — | 69 | |
L-/D-glutamic acid | Citric acid | NaOH | 180 | 10 | 407 | 34 | |
D-(-)-fructose | Vine teas | NADES | 160 | 3 | 445 | 35 | |
L-/D-cysteine | Citric acid | — | 180 | 1.5 | 442 | 54 | |
L-glutathione | Ethylenediamine | — | 200 | 6 | 390 | 57 | |
L-/D-lysine | Jeffamine® ED-900 | Ethylene glycol | 170 | 3 | 400~600 | 37 | |
L-/D-lysine | Jeffamine® ED-900 | Ethylene glycol | 170 | 2 | 400~600 | 38 | |
L-/D-cysteine | — | NaOH | 60 | 24 | 510 | 39 | |
L-/D-cysteine | — | — | 80 | 48 | — | 55 | |
L-/D-glutamic | Citric acid | Polyethyleneimine | 160 | 1 | 450 | 41 | |
L-/D-cysteine | — | NaOH | 120 | 16 | 460 | 42 | |
L-/D-cysteine | Citric acid | — | 160 | 6 | 445 | 58 | |
L-/D-serine | — | — | 140 | 8 | 475 | 59 | |
L-/D-cysteine L-/D-glutathione L-/D-threonine | Citric acid | — | 180 | 1.5 | 432 425 430 | 60 | |
L-tyrosine | o-phenylenediamine | H2SO4 | 160 | 7 | 627 | 43 |
表2 基于手性继承策略的两步法合成CCDsTable 2 Two-step method based on chiral inheritance strategy |
Method | Chiral source | Carbon source | Other source | T(℃) | t(h) | EM(nm) | ref |
---|---|---|---|---|---|---|---|
Two-step method | L-/D-cysteine | Citric acid+ethylenediamine | — | 160 | 4 | 424 | 9 |
L-/D-cysteine | Urea | — | 180 | 1 | 450 | 49 | |
L-/D-cysteine | Citric acid+Urea | DMF | 180 | 6 | 625 | 33,68 | |
L-/D-arginine/L-lysine | Citric acid+Urea | DMF | 160 | 6 | >600 | 44 | |
L-/D-cysteine | Cane molasses | — | 160+120 | 24+2 | 400~440 | 61 |
图4 (A) 以藤茶和NADES为原料合成CCDs[37];(B) 以柠檬酸和乙二胺与(ⅰ) L-半胱氨酸,(ⅱ) L-谷胱甘肽,(ⅲ) L-苯基甘氨酸,(ⅳ) 色氨酸四种手性前驱体为原料水热炭化合成CCDs[49]Fig. 4 (A) CCDs synthesized from vine tea and NADES as raw materials[37] (B) CCDs were synthesized by hydrothermal carbonization of citric acid and ethylenediamine with four chiral precursors of (ⅰ) L-cysteine, (ⅱ) L-glutathione, (ⅲ) L-phenylglycine, and (ⅳ) tryptophan[49] |
图5 (A~C) 以L-/D-半胱氨酸为原料合成CCDs的TEM图和尺寸分布图[29,40,42];(D) 多色CCDs的制备[32]Fig. 5 (A~C) TEM image and size distribution histograms of CCDs prepared by L-/D-cysteine[29,40,42]. (D) The preparation procedure for multicolor-emitting chiral carbon dots[32]. (Reprinted with permission from ref 42; Copyright (2023) American Chemical Society) |
图6 (A) 不同温度下制备CCDs的CD光谱和glum光谱[67]; (B) 不同反应时间制备CCDs的CD光谱[51]; (C,D) 不同反应温度和时间制备CCDs的glum光谱[60]Fig. 6 (A) CD and glum spectra of CCDs prepared at different reaction temperatures[67]. (B) CD spectra of CCDs were prepared at different reaction times[51]. (C,D) glum spectra of CCDs prepared at different reaction temperatures and times[60] |
图12 (A) 紫外光照射下加入不同浓度的L-/D-Lys后CCDs水溶液和将CCDs嵌入纳米纸的颜色变化[9]; (B) 基于CCDs在On-Off-On模式下测定Sn2+和L-Lys纳米探针的制备[30]; (C) CCDs对异亮氨酸对映体的识别[47]Fig. 12 (A) Color change of CCDs aqueous solution and CCDs embedded in nanopaper after adding L-/D-Lys of different concentrations under UV irradiation[9]. (B) Fabricating CCDs-based nanoprobes for assaying Sn2+ and L-Lys in On-Off-On mode[30]. (C) Chiral recognition method based on CCDs towards isoleucine enantiomers[47] |
图17 (A) 将CCDs封装在ZIF-8纳米颗粒中用于识别叶酸和硝基呋喃酮[58];(B) 手性双发射复合材料荧光素/CCDs@ZIF-8用于苯二胺(PD)异构体及其氧化产物的高灵敏度鉴别 (2-MIM: 2-甲基咪唑)[82]Fig. 17 (A) CCDs encapsulated in ZIF-8 nanoparticles for turn-on recognition of chiral folic acid and nitrofurazone[58]. (B) Chiral dual-emission composite material fluorescein/CCDs@ZIF-8 for highly sensitive discrimination of phenylenediamine (PD) isomers and their oxidized product (2-MIM: 2-methylimidazole)[82] |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
TangD,
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
ZhaoD,
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
(卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 化学进展, 2020, 32 (04): 381.).
|
[63] |
|
[64] |
|
[65] |
|
[66] |
(刘爽. 陕西师范大学硕士论文, 2020.).
|
[67] |
(卫迎迎. 太原理工大学博士论文, 2021.).
|
[68] |
(赵佳奇. 吉林大学博士论文, 2021.).
|
[69] |
(吴冰燕. 兰州大学硕士论文, 2022.).
|
[70] |
(安邦, 徐明聪, 马春慧, 罗沙, 李伟, 刘守新. 高分子学报, 2022, 53(3) : 211.).
|
[71] |
|
[72] |
(刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30 (4): 349.).
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
/
〈 |
|
〉 |