Reviews on Storage and Processing of Citrus Fruits

WANGJianhui, GUOWeiqing, ZHENGFan, ZHANGYin, WANGXinhui, LIUDayu, TANGJiang

Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (8) : 49-55.

PDF(1475 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1475 KB)
Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (8) : 49-55. DOI: 10.11923/j.issn.2095-4050.casb2023-0164

Reviews on Storage and Processing of Citrus Fruits

Author information +
History +

Abstract

Citrus is the largest category of fruit in China, which is widely planted and has many cultivars for fresh fruit market. To extend shelf life, promote intensive processing, improve enterprise’s benefit, current research progresses related to fruit storage and processing have been reviewed. At first, new preservation technologies applied in Citrus fruits’ storage were summarized. Subsequently, innovation technologies for processing products and by-products utilization were discussed. Finally, functional components in Citrus with potential application in pharmaceutical industry were also reviewed. Therefore, depending on different cultivars in production areas, fruit sorting system after post-harvest are recommended for orange and lemon varieties. Meanwhile, the non-thermal processing technology and enzymatic digestion for de-peeling is utilized for tradition processing products, such as sweet orange and tangerine. Functional components in Citrus will be extracted and prepared to medicinal and edible food. In conclusion, new technology for storage and processing are used in Citrus to extendindustry chain, which significantly boost industry development in future.

Key words

Citrus / preservation / storage / intensive processing / functional components

Cite this article

Download Citations
WANG Jianhui , GUO Weiqing , ZHENG Fan , et al . Reviews on Storage and Processing of Citrus Fruits[J]. Journal of Agriculture. 2024, 14(8): 49-55 https://doi.org/10.11923/j.issn.2095-4050.casb2023-0164

References

[1]
邓秀新. 中国柑橘育种60年回顾与展望[J]. 园艺学报, 2022, 49(10):2063-2074.
过去的60年,中国柑橘遗传改良与品种选育研究取得长足进展。据统计,在中国重庆、武汉等地建立的柑橘种质资源迁地保存圃、愈伤组织库分别保存了1 700多份芸香科材料和100多个柑橘品种的胚性愈伤组织。经调查,发掘到道县野橘、莽山野柑、红河大翼橙等多个野生种及迷你野生柑橘——单胚山金柑;发掘的'资阳香橙'已作为砧木应用于产业。累计选育柑橘新品种122个,包含121个接穗品种和1个砧木品种,涉及宽皮橘、橙、柚等主要柑橘类型。上述接穗品种88.5%来自芽变和实生选种,余下的11.5%来自人工创制的变异,包括杂交、诱变和细胞融合等途径产生的变异;改良的性状主要是无籽、熟期和色泽等。在育种技术方面,组学技术全面应用于柑橘遗传改良,完成了甜橙等柑橘主要类型的基因组测序,发掘到柑橘重要农艺性状的相关基因,如控制多胚的基因CitRWP等;建立起柑橘遗传转化和基因编辑技术体系,为柑橘基因组设计育种奠定了坚实基础。
[2]
孙学义, 王旭, 郭康权, 等. “橘子自动剥皮NFC果汁生产线”成套性能试验与研究[J]. 西北园艺(综合), 2020(1):46-48.
[3]
沈兆敏. 我国柑橘生产销售现状及发展趋势[J]. 果农之友, 2021(3):1-4.
[4]
邓秀新. 柑橘产业发展趋势与桂林柑橘品种结构调整[J]. 南方园艺, 2020, 31(6):1-4.
[5]
程玉娇, 李云云, 张敏. 热处理对‘塔罗科’血橙物流变温环境下的保鲜效果[J]. 食品科学, 2016, 37(6):254-260.
以‘塔罗科’血橙为试材,采用48、52、56 ℃的热水分别短时处理1 min和2 min,研究其在贮藏期(3 ℃、相对湿度(relative humidity,RH)90%~95%条件下21 d)、模拟运输期(10 ℃、RH 60%~70%条件下7 d)和货架期(20 ℃、RH 60%~70%条件下7 d)3 个物流变温阶段的保鲜效果。结果表明,适宜的热水处理能明显减缓物流过程温度变化引起的不利影响,提高血橙果皮中多酚氧化酶、过氧化物酶、超氧化物歧化酶、过氧化氢酶的活性,使其维持在较高水平;同时,也能够保持很好的色泽(柑橘色泽指数、色相)、硬度和营养品质(花色苷含量、总酸含量、可溶性固形物含量)。然而处理温度超过56 ℃造成血橙产生不可逆的热损伤,物流过程中的温度变化促进了其腐烂。综合分析,52 ℃、2 min条件下血橙的保鲜效果最佳。
[6]
陈晓彤, 潘艳芳, 郑桂霞, 等. 热处理协同臭氧对沃柑贮藏品质调控研究[J]. 食品研究与开发, 2020, 41(12):21-25.
[7]
刘红, 黎琴, 胡尚连, 等. γ-辐照对指状青霉的抑制作用及在椪柑果实保鲜中的应用[J]. 食品工业科技, 2019, 40(14):127-133.
[8]
ALFEREZ FERNANDO, LIAO H L, BURNS JACQUELINE K. Blue light alters infection by Penicillium digitatum in tangerines[J]. Postharvest biology and technology, 2012, 63(1):11-15.
[9]
黄家红, 梁芸志, 李少华, 等. 低温气调协同臭氧间歇处理对柑橘贮藏品质的影响[J]. 保鲜与加工, 2018, 18(3):28-32.
[10]
李义冬, 沈勇根, 上官新晨, 等. 金柑气调保鲜的研究[J]. 食品工业科技, 2011, 32(4):345-347+351.
[11]
PALOU L, SMILANICK J L, CRISOSTO C H, et al. Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit[J]. Plant disease, 2001, 85(6):632-638.
The effects of gaseous ozone exposure on in vitro growth of Penicillium digitatum and Penicillium italicum and development of postharvest green and blue molds on artificially inoculated citrus fruit were evaluated. Valencia oranges were continuously exposed to 0.3 ± 0.05 ppm(vol/vol) ozone at 5°C for 4 weeks. Eureka lemons were exposed to an intermittent day-night ozone cycle (0.3 ± 0.01 ppm ozone only at night) in a commercial cold storage room at 4.5°C for 9 weeks. Both oranges and lemons were continuously exposed to 1.0 ± 0.05 ppm ozone at 10°C in an export container for 2 weeks. Exposure to ozone did not reduce final incidence of green or blue mold, although incidence of both diseases was delayed about 1 week and infections developed more slowly under ozone. Sporulation was prevented or reduced by gaseous ozone without noticeable ozone phytotoxicity to the fruit. A synergistic effect between ozone exposure and low temperature was observed for prevention of sporulation. The proliferation of spores of fungicide-resistant strains of these pathogens, which often develop during storage, may be delayed, presumably prolonging the useful life of postharvest fungicides. In vitro radial growth of P. italicum, but not of P. digitatum, during a 5-day incubation period at 20°C was significantly reduced by a previous 0.3 ± 0.05 ppm ozone exposure at 5°C for 4 days. Inoculum density did not influence the effect of gaseous ozone on decay incidence or severity on oranges exposed to 0.3 ± 0.05 ppm ozone at 20°C for 1 week. Susceptibility of oranges to decay was not affected by a previous continuous exposure to 0.3 ± 0.05 ppm ozone at 20°C for 1 week. A corona discharge ozone generator was effective in abating ethylene in an empty export container.
[12]
乔勇进, 王海宏, 叶正文, 等. 臭氧处理对温州蜜柑果实贮藏品质的影响[J]. 湖南农业大学学报(自然科学版), 2007(33):76-79.
[13]
邓秀新, 彭抒昂. 柑橘学[M]. 北京: 中国农业出版社, 2013.
[14]
孟华岳, 朱富伟, 廖林瀚, 等. 柑橘防腐保鲜剂使用与残留监管研究[J]. 农产品质量与安全, 2022, 115(1):73-78.
[15]
徐冬梅, 张燕宁, 张兰, 等. 碳酸钠和碳酸氢钠对柑橘青霉病的防治效果评价[J]. 食品科技, 2016, 41(8):254-258.
[16]
陈兆星, 吴武, 张洪铭, 等. 次氯酸钠结合磷酸不同方式处理对早熟蜜橘防腐保鲜的影响[J]. 食品科技, 2017, 42(1):66-69.
[17]
万春鹏, 陈楚英, 陈明, 等. 肉桂提取物对赣南脐橙的保鲜效果[J]. 食品工业科技, 2015, 36(17):317-321.
[18]
尹佳, 王玉瑶, 谢富忠, 等. 葡萄籽提取物对柑橘果实的保鲜效果研究[J]. 吉林化工学院学报, 2021, 38(9):97-101+116.
[19]
欧阳小艳, 吴正奇, 万端极, 等. 玉米醇溶蛋白成膜在柑橘保鲜中的应用[J]. 湖北工业大学学报, 2015, 30(5):20-23.
[20]
柳富杰, 盘艳梅, 吴海铃, 等. 迷迭香提取物/海藻酸钠涂膜对柑橘的保鲜研究[J]. 山东化工, 2021, 50(16):25-28.
[21]
邹运乾, 林子桢, 许让伟, 等. 替代柑橘聚乙烯薄膜单果套袋的涂膜剂研发及保鲜效果评价[J]. 中国农业科学, 2022, 55(12):2398-2412.
【背景】 聚乙烯薄膜单果套袋是目前我国最为常用的柑橘贮藏期保鲜方式,近50年来在全国大范围应用。近年来聚乙烯薄膜果袋因使用后回收难带来的环境污染问题引起全社会广泛关注,且由于柑橘单果套袋主要依赖手工完成,导致劳动力日益紧缺、生产成本逐年上升等问题日益凸显。因此,研发一种能替代聚乙烯薄膜的新型涂膜材料,实现柑橘保鲜生产向全程机械化转型是产业的重大需求。【目的】 研发以小烛树蜡及蜂蜡为基础的“BC”(Beeswax-Candelilla Wax Coating)涂膜剂配方,并用于处理温州蜜柑果实,评价其保鲜效果以及替代聚乙烯薄膜单果套袋的可行性。【方法】 选择最优比小烛树蜡、蜂蜡和甘油组合涂膜剂,以成熟‘尾张’温州蜜柑果实为试验材料,进行套袋或涂膜处理。对处理后的果实在不同时间节点检测以下指标:果实失重率、硬度、色差、果汁总可溶性固形物(TSS)/可滴定酸(TA)含量、果皮总酚总黄酮含量、呼吸强度、果实内部气体成分和异味物质含量,并用气相质谱仪检测不同处理果皮初生代谢物含量。扫描电镜观察处理后果面蜡质形态;同时对光泽度、异味、风味、出汁量、甜度、酸度和总体满意度等指标进行感官评价。【结果】 BC涂膜剂处理温州蜜柑果实常温贮藏28 d后,果实失重率从22.62%显著降低到3.83%;同时延缓硬度与色差值的变化,延缓果实内部TSS和TA含量变化,提高果皮总酚、总黄酮及初生代谢物含量。果实内部CO2浓度适度升高,呼吸强度从43.36 mL·kg-1·h-1显著降低到16.75 mL·kg-1·h-1;较对照处理而言,BC处理还增强了果实感官品质,总体满意度从3.09提升至3.69。除异味物质、呼吸强度外,其他各项指标检测结果均表明BC与套袋处理无显著性差异,但BC处理的果实中乙醇含量(777.9 mg·L-1)显著低于人类感知阈值水平(1 500 mg·L-1)及商业涂膜剂处理后的浓度(2 021.2 mg·L-1)。【结论】 BC涂膜剂保水性能良好,涂膜处理后与套袋果实相比,果实的内部品质、外观品质以及测定的各项生化指标均无显著性差异。而且涂膜处理与果实采后加工分选线兼容性好,可实现在线打蜡处理,生产效率高,生产用工少。综上表明BC涂膜具备替代套袋保鲜作用。
[22]
阎然, 傅茂润, 陈蕾蕾, 等. 解淀粉芽孢杆菌NCPSJ7对采后脐橙绿霉病的防治作用及机制[J]. 食品科学, 2021, 42(17):193-200.
[23]
王博, 李亮, 龙超安, 等. 柠檬形克勒克酵母对温州蜜柑“国庆一号”采后贮藏的防腐效果[J]. 菌物学报, 2008(3):385-394.
[24]
林旭东, 沈波涛, 朱麟, 等. MAP结合1-MCP处理对“红美人”柑橘冷藏品质的影响[J]. 保鲜与加工, 2020, 20(2):74-78.
[25]
朱亚猛, 谢超, 郑炜, 等. 臭氧处理协同低压静电场对青见柑橘低温贮藏品质的影响[J]. 食品安全质量检测学报, 2022, 13(19):6416-6422.
[26]
许国娟, 陈丽君, 吴考, 等. 肉桂精油微囊的制备及对柑橘采后病原菌的抑制作用[J]. 食品科技, 2021, 46(8):238-243.
[27]
陈秀, 罗震宇, 张亚男, 等. 外源GABA处理对采后靖安椪柑果实品质和保鲜效果的影响[J]. 果树学报, 2022, 39(4):652-661.
[28]
成传香. 不同品种柑橘汁中香气物质的比较及其加工方式的影响[D]. 重庆: 西南大学, 2020.
[29]
夏其乐, 张俊, 邢建荣, 等. 橘瓣酶解脱囊衣工艺及其罐头品质的研究[J]. 中国食品学报, 2010, 10(1):79-85.
[30]
李涛, 李绮丽, 张群, 等. 低温连续杀菌对柑橘罐头品质的影响[J]. 中国食品学报, 2020, 20(11):176-184
[31]
安冬梅, 孙爱红, 孟长军. 柑橘果酒加工工艺初探[J]. 北方园艺, 2010(4):180-183.
[32]
黄衡, 邓欣毅, 邓明学. 爱媛38号果实发酵生产柑橘果酒初探[J]. 南方园艺, 2021, 32(2):69-72.
[33]
常春梅, 黄玉琴, 窦媛, 等. 陈皮精油的提取工艺优化及其抗氧化研究[J]. 中国调味品, 2022, 47(12):7-12.
[34]
张金磊, 陈兴煌. 明胶柑橘精油复合膜对草莓保鲜效果的影响[J]. 农产品加工, 2021(19):17-20+24.
[35]
TAKTAK O, YOUSSEF S B, VIAN M A, et al. Physical and chemical influences of different extraction techniques for essential oil recovery from Citrus sinensis peels[J]. Journal of essential oil bearing plants, 2021, 24(2):290-303.
[36]
MAI T C, TRAN N T, MAI D T, et al. Supercritical CO2 assisted extraction of essential oil and naringin from Critus grandis peel: In vitro antimicrobial activity and docking study[J]. RSC advances, 2022, 12(40):25822-26469.
[37]
LIEW SH Q, TEOH W H, TAN CH K, et al. Subcritical water extraction of low methoxyl pectin from pomelo (Citrus grandis (L.) Osbeck) peels[J]. International journal of biological macromolecules, 2018, 116:128-135.
[38]
AFKHAMI R, GOLI M, KERAMAT J. Functional orange juice enriched with encapsulated polyphenolic extract of lime waste and hesperidin[J]. International journal of food science and technology, 2018, 53(3):634-643.
[39]
AGULLÓ V, CRISTINA G V, DOMÍNGUEZ P R. Beverages based on second quality citrus fruits and Maqui berry, a source of bioactive (Poly)phenols: Sorting out urine metabolites upon a longitudinal study[J]. Nutrients, 2021, 13(2):312.
[40]
陈嘉景, 彭昭欣, 石梅艳, 等. 柑橘中类黄酮的组成与代谢研究进展[J]. 园艺学报, 2016, 43(2):384-400.
柑橘是人类膳食中类黄酮的主要来源之一。类黄酮对人体健康有多方面的生理功能,且其抗癌、抗病毒、抗炎及抑菌效果可能基于其强抗氧化活性。柑橘中的类黄酮类物质分为黄烷酮、黄酮、黄酮醇、二氢黄酮醇和花色苷等几类,且以黄烷酮糖苷类含量最为丰富。柑橘中类黄酮组成和含量因种质和组织部位而异,柚果实中含有大量苦味的新橘皮糖苷类,而甜橙和橘果实中以无苦味的柚皮芸香糖苷类为主。目前,对类黄酮代谢途径的认识主要局限于其主通路上,但对类黄酮糖基化、酰基化以及甲基化等相关的基因和酶类研究较少。随着柑橘类黄酮代谢研究的深入,其积累和分布的遗传机理将逐渐得以揭示,这将会为培育功能性柑橘新种质提供理论依据。
[41]
李继伟, 柯奥, 李炜玮, 等. 柑橘黄酮对胰蛋白酶活性的抑制及作用机制初探[J]. 天然产物研究与开发, 2021, 33(10):1735-1740.
[42]
李梦军, 刘小霞, 邓金平, 等. 柚皮苷和橙皮苷对人脐静脉平滑肌细胞增殖及凋亡的影响[J]. 营养学报, 2021, 43(6):566-570.
[43]
杨蕾, 侯慧芳, 王敏, 等. 基于LC-MS/MS分析‘塔罗科’血橙优系果实花青素组分特征[J]. 食品科学, 2022, 43(22):281-290.
[44]
CHEN K, KORTESNIEMI M K, LINDERBORG K M, et al. Anthocyanins as promising molecules affecting energy homeostasis, inflammation, and gut microbiota in type 2 diabetes with special reference to impact of acylation[J]. Journal of agricultural and food chemistry, 2022, 71(2):1002-1017.
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
[45]
YU H, WANG CH, DENG SH T, et al. Optimization of ultrasonic-assisted extraction and UPLC-TOF/MS analysis of limonoids from lemon seed[J]. LWT-food science and technology, 2017, 84:135-142.
[46]
李艺. 柠檬苦素纳米乳液对柑橘采后病原菌的抑制作用和机理探究[D]. 重庆: 西南大学, 2021.
[47]
王建辉, 杨鑫, 龚晓源, 等. 两个柑橘品种果实有机酸相关基因的差异表达分析[J]. 农业生物技术学报, 2023, 31(4):718-729.
[48]
郝元元. LC-MS/MS法测定柚子皮中香豆素类物质组成及含量[J]. 食品研究与开发, 2019, 40(16):146-152.
[49]
OBOH G, ADEMOSUN A O. Phenolic extracts from grapefruit peels (Citrus paradisi) inhibit key enzymes linked with type 2 diabetes and hypertension[J]. Journal of food biochemistry, 2011, 35(6):1703-1709.
[50]
李璐, GEMMA, LYALL K, 等. 血橙果汁对超重志愿者心血管健康的改善[C]. 中国食品科学技术学会.中国食品科学技术学会第十六届年会暨第十届中美食品业高层论坛论文摘要集. 2019:2
[51]
ADEMOSUN A O, OBOH G, OLASEHINDE T A, et al. From folk medicine to functional food: A review on the bioactive components and pharmacological properties of citrus peels[J]. Oriental pharmacy and experimental medicine, 2018, 18:9-20.
[52]
单杨. 现代柑橘工业[M]. 北京: 化学工业出版社, 2013.
PDF(1475 KB)

Accesses

Citation

Detail

Sections
Recommended

/