Application of Plant Growth Regulators in Peanuts and Safety Analysis

LINQiujun, WUXianxin, ZOUXun, LIGuang, WANGJianzhong, GUOChunjing

Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (8) : 24-29.

PDF(1179 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1179 KB)
Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (8) : 24-29. DOI: 10.11923/j.issn.2095-4050.cjas2023-0155

Application of Plant Growth Regulators in Peanuts and Safety Analysis

Author information +
History +

Abstract

To clarify the use of plant growth regulators in peanut production, we collected statistics on the types of regulators currently valid for registration in peanuts by querying the China Pesticide Information Network, and inquired about the maximum residue limits and detection methods of regulators in peanuts in the national food safety standard Maximum Residue Limits of Pesticides in Food (GB 2763—2021). The toxicity of regulators mainly used in peanut productionwas analyzed to provide opinions and suggestions for the formulation and revision of relevant standards in the next step. And it also provided reference for the high-quality development of the peanut industry’s export earnings, enhanced the international competitiveness of China’s peanut industry, and ensured the healthy and sustainable development of China’s peanut industry.

Key words

peanut / plant growth regulator / pesticide registration / residue limits / safety analysis

Cite this article

Download Citations
LIN Qiujun , WU Xianxin , ZOU Xun , et al . Application of Plant Growth Regulators in Peanuts and Safety Analysis[J]. Journal of Agriculture. 2024, 14(8): 24-29 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0155

References

[1]
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022.
[2]
王伯凯, 吴努, 胡志超, 等. 国内外花生收获机械发展历程与发展思路[J]. 中国农机化, 2011(4):6-9.
[3]
廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报, 2020, 42(2):161-166.
[4]
日本厚生劳动省[S]. 定虫隆、矮壮素、多杀霉素、氟苯脲、吡菌苯威及甲霜灵和精甲霜灵6种农兽药在部分食品中的残留限量标准.
[5]
樊萍. 植物生长调节剂的应用现状及前景[J]. 科技创新与应用, 2016(35):292.
[6]
辛雪成, 毛志强, 王芳, 等. 几丁寡糖叶面肥对花生品质和产量的影响[J]. 陕西农业科学, 2019, 65(12):1-4.
[7]
张海燕, 王铭伦. 植物生长调节剂与花生生长发育[J]. 莱阳农学院学报, 2002(1):30-33.
[8]
徐爱东. 我国蔬菜中常用植物生长调节剂的毒性及残留问题研究进展[J]. 中国蔬菜, 2009(8):1-6.
[9]
高仁君, 陈隆智, 郑明奇, 等. 农药对人体健康影响的风险评估[J]. 农药学学报, 2004(3):8-14.
[10]
AFEF T, IBTISSEM B, AMARA N, et al. Oxidative stress induced by gibberellic acid in bone of suckling rats[J]. Ecotoxicology and environmental safety, 2010, 74(4):643-649.
[11]
农业农村部农药检定所. 中国农药信息网[W]. http://www.chinapesticide.org.cn/. 2023-05-08.
[12]
刘伟, 王金信, 杨广玲, 等. 芸苔素内酯对花生幼苗生长的影响[J]. 现代农药, 2005, 4(1):42-43.
[13]
冯渊, 刘林业. 芸苔素内酯在花生上的应用效果研究[J]. 现代农业科技, 2017(12):127-128.
[14]
张霞, 许曼琳, 郭志青, 等. 吡唑醚菌酯和芸苔素内酯协同防治花生根腐病和白绢病的研究[J]. 花生学报, 2020, 49(3):52-57.
[15]
KAPUR A, KAUR J, SHARMA H L, et al. Preconditioning of peanut (Arachis hypogaea) seeds to release dormancy[J]. Annals of biology (Ludhiana), 1990, 6(2):141-145.
[16]
曹莹, 张贺楠, 孟军, 等. 木醋液与萘乙酸钠复合作用对花生光合特性及产量的影响[J]. 干旱地区农业研究, 2017, 35(1):185-210.
[17]
姚君平, 杨新道, 陈庆良. 植物生长促进剂快丰收对花生产量影响的研究[J]. 花生科技, 1991(1):26-28.
[18]
唐艳. 三十烷醇对花生增产效果初报[J]. 广西园艺, 1999(3):26-27.
[19]
刘军舰. 0.1%三十烷醇微乳剂对花生调节生长的试验示范[J]. 河南农业, 2019(4):32.
[20]
王华松, 刘歧茂, 于照兹, 等. 植物生长抑制剂缓控花生徒长效果研究[J]. 花生科技, 2005(8):34-35.
[21]
郭栋梁, 王静杰, 万小荣, 等. 外源脱落酸抑制花生种子发芽的生理机制[J]. 植物生理学通讯, 2008, 44(5):936-938.
[22]
王重锋, 马朝旺, 李智辉, 等. 10%调环酸钙水分散粒剂对春播花生株高和产量的影响[J]. 河南农业, 2019(4):37-38.
[23]
钟瑞春, 陈元, 唐秀梅, 等. 3种植物生长调节剂对花生的光合生理及产量品质的影响[J]. 中国农学通报, 2013, 29(15):112-116.
[24]
钟瑞春, 唐秀梅, 蒋菁, 等. 烯效唑对花生生长、光合作用及产量性状的影响[J]. 广东农业科学, 2015, 42(11):65-70.
[25]
唐秀梅, 刘超, 钟瑞春. 多效唑、缩节胺和矮壮素对花生化学调控效应的比较研究[J]. 南方农业学报, 2011, 42(6):603-605.
[26]
孟凡亮. 矮壮素等植物生长调节剂在花生高产田的应用研究[J]. 农药科学与管理, 2007, 28(11):35-37.
[27]
张舒, 彭超美, 许凌风, 等. 30%胺鲜酯•甲哌鎓水剂对花生生长及产量的调控作用[J]. 华中农业大学学报, 2007, 26(4):469-471.
[28]
GB2763-2021.食品安全国家标准食品中农药最大残留限量[S].
[29]
胡金和, 饶月亮, 邹旭, 等. 不同浓度的甲哌嗡对芝麻产量的影响[J]. 江西农业学报, 2010, 22(6):101-103.
[30]
STUART B L, WENDT C W, ABERNATHY J R, et al. The influence of mepiquat chloride on the plant water status of cotton[J]. Proceedings of the plant growth regulator working group, 1980.
[31]
JUNG K. H. Growth inhibition effect of pyroligneous acid on pathogenic fungus, Alternariamali, the agent of Alternaria blotch apple[J]. Biotechnology and bioprocess engineering, 2007, 12:318-322.
[32]
孙连喆. 植物生长调节剂药害症状及预防[J]. 农药市场信息, 2016(16):1.
[33]
刘乾开, 俞康宁, 朱国念, 等. 农药商品学[M]. 上海: 上海科学技术出版社, 1991:422-423.
[34]
JIANG X, WANG Y, XIE H, et al. Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants[J]. Environmental science and pollution research, 2019, 26(1):27385-27395.
[35]
王熹, 陶龙兴, 高成伟, 等. 连作晚稻秧苗徒长的化学调控—2.多效唑控长效应的生理分析[J]. 作物学报, 1990(1):91-96.
[36]
陈润涛, 邓莹玉, 陈晓燕, 等. 多效唑原药SD大鼠两代繁殖毒性研究[J]. 毒理学杂志, 2008(3):195-196.
[37]
曾丽海, 殷霄, 谢植伟, 等. 多效唑原药对SD大鼠慢性毒性与致癌性[J]. 中国职业医学, 2018, 45(4):443-450.
[38]
CHEN R T, DENG Y Y, CHEN X Y. Study on the two-generation reproductive toxicity of paclobutrazol in SD rats[J]. Journal of toxicology, 2008, 180(supp-S):S165-S165.
[39]
李春梅. 矮壮素对小鼠生殖毒性的研究[D]. 杨凌: 西北农林科技大学, 2012.
[40]
HOU X H, JIANG J J, HUANG D, et al. The skeletal developmental toxicity of chlormequat chloride and its underlying mechanisms[J]. Toxicology: An international journal concerned with the effects of chemicals on living systems, 2017.
[41]
贾丽霞, 张琪, 侯晓红, 等. 矮壮素对小鼠前成骨细胞系MC3T3-E1骨骼发育相关基因及蛋白的影响及其机制[J]. 癌变·畸变·突变, 2018, 30(3):188-193,199.
[42]
魏福香. 为何撤销丁酰肼在花生上的登记[J]. 农药科学与管理, 2004, 25(6):40.
[43]
邵莉楣. 植物生长调节剂应用手册[M]. 北京: 金盾出版社, 2011
[44]
海关总署国际检验检疫标准与技术法规研究中心. 中国技术性贸易措施网[W]. http://www.tbtsps.cn/2023-05-08.
[45]
CAC农药残留限量标准[S]. 2022.
[46]
美国农药残留限量标准[S]. 180.698 Chlormequat chloride; tolerances for residues.
[47]
欧盟农药残留限量标准[S]. Reg. (EU)2022/1290.
[48]
日本农药残留限量标准[S]. 肯定列表制度.
[49]
WU C, SUN J, ZHANG A, et al. Dissipation and enantioselective degradation of plant growth retardants paclobutrazol and uniconazole in open field, greenhouse, and laboratory soils[J]. Environmental science & technology, 2013, 47(2):843-849.
[50]
SAEID R, ABOOALFAZL A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review-Science Direct[J]. Chemosphere, 2019, 220:818-827.
Soil contamination is one of the most important environmental problems around the world. The transfer of organic contaminants and heavy metals to the food chain is a major threat to human health. Purging these contaminants often involves a lot of energy and complex engineering processes. Phytoremediation technology can be used in various environments, such as water, soil, and air, to reduce or eliminate different contaminants. The major mechanisms involved in phytoremediation include plant extraction, rhizofiltration, plant evaporation, plant stabilization, plant decomposition, and rhizosphere degradation. The efficiency of phytoremediation can be increased through using chelating and acidifying agents, applying electric current in the soil, using organic chemicals and fertilizers, planting transgenic plants, using bacteria, and applying plant growth regulators. Recently, the use of plant growth regulators has been investigated as a suitable method for improving the efficacy of phytoremediation. Effective plant growth regulators to improve phytoremediation include auxins, gibberellins, cytokinins, and salicylic acid. The activity of these materials depends on their concentration, environmental factors that affect their absorption, and the physiological state of the plant. Using these materials increases the biomass of the plant and reduces the negative effects of the presence of contaminants in the plant. The present study aimed to review the latest studies performed on the improvement of phytoremediation using plant growth regulators and their mechanisms.Copyright © 2018 Elsevier Ltd. All rights reserved.
PDF(1179 KB)

Accesses

Citation

Detail

Sections
Recommended

/