
Effects of Dry Scattering PAM on the Erosion Sediments of Loess Soil Engineering Accumulation
LUODong, ZOUChaoyu, BAIGangshuan
Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (8) : 30-37.
Effects of Dry Scattering PAM on the Erosion Sediments of Loess Soil Engineering Accumulation
To explore the suitable amount of dry scattering PAM (polyacrylamide) to reduce the erosion sediments and maintain the stability of engineering accumulation, 0.5, 1.0, 1.5, 2.0 and 2.5 g/m2 of PAM were dry scattered on the surface of conical loess soil engineering accumulation in the loess hilly-gully region and with no PAM as the control (CK). The effects of PAM on surface runoff, erosion sediments, rill development and soil moisture of loess soil engineering accumulation were monitored under natural rainfall conditions. The results showed that the runoff, runoff frequency and runoff coefficient of different treatments decreased first and then increased with the increase of PAM dry scattering amount. The values were the lowest when the PAM dry scattering amount was at 1.0 g/m2, and were the highest when PAM dry scattering amount was at 2.5 g/m2. The erosion sediments, rill erosion sediments and rill erosion coefficient decreased with the increase of PAM dry scattering amount. When PAM dry scattered at 1.5, 2.0 and 2.5 g/m2, the erosion sediments, rill erosion sediments and rill erosion coefficient were significantly lower than that of CK and PAM dry scattering amount of 0.5 and 1.0 g/m2. When PAM dry scattered at 1.0 g/m2, the soil moisture of engineering accumulation was the highest, and when PAM dry scattered at 2.5 g/m2, the soil moisture was the lowest. When PAM dry scattering amount reaches 1.5 g/m2, PAM promoted the formation of runoff, reduced the erosion sediments and rill erosion coefficient, and reduced the soil moisture of loess soil engineering accumulation. To sum up, in order to reduce the erosion sediments and maintain the stability of loess soil engineering accumulation, the dry scattering amount of PAM should be about 2.0 g/m2.
PAM / engineering accumulation / run off / erosion sediment / soil moisture
[1] |
李晶晶, 邹超煜, 白岗栓. 聚丙烯酰胺对坡地苹果园水土流失和土壤养分流失的影响[J]. 应用生态学报, 2016, 27(9):2991-2999.
为了改善坡地苹果园的土壤环境,遏制水土流失和土壤养分流失,探寻聚丙烯酰胺适宜的干撒施用量,2010—2012年在陕北丘陵沟壑区的坡地苹果园,以不施聚丙烯酰胺为对照,分别撒施0.6、0.8、1.0、1.2、1.4和1.6 g·m-2的聚丙烯酰胺,监测果园地表产流、土壤流失、养分流失和苹果植株生长状况.结果表明: 坡地果园的径流量和5—7月的产流次数均随聚丙烯酰胺撒施量的增加呈“V”型变化,其中撒施量为1.0 g·m-2时最低,但果园侵蚀泥沙量则随聚丙烯酰胺撒施量的增加而降低.地表径流和侵蚀泥沙中的铵态氮、速效磷和速效钾的浓度均随聚丙烯酰胺撒施量的增加而降低;聚丙烯酰胺可显著降低地表径流中的硝态氮含量,对侵蚀泥沙中的硝态氮含量则无显著影响;侵蚀泥沙中的有机质、全氮、全磷和全钾含量均随聚丙烯酰胺撒施量的增加而降低.聚丙烯酰胺提高了苹果单果质量及产量,但对苹果植株生长及果实风味品质无显著影响.聚丙烯酰胺在坡地苹果园中的适宜撒施量应为1.0 g·m-2.
|
[2] |
赵护兵, 刘国彬, 曹清玉. 黄土丘陵沟壑区不同植被类型的水土保持功能及养分流失效应[J]. 中国水土保持科学, 2008, 6(2):43-48.
|
[3] |
张舒婷, 王晓慧, 彭道黎, 等. 黄土高原丘陵沟壑区植被覆盖度变化监测[J]. 浙江农林大学学报, 2020, 37(6):1045-1053.
|
[4] |
张翔, 高照良, 卢茜. 土堆积体坡面细沟形态及其沿程分布特征[J]. 水土保持研究, 2019, 26(5):53-59.
|
[5] |
杨帅, 李永红, 高照良, 等. 黄土堆积体植物篱减沙效益与泥沙颗粒分形特征研究[J]. 农业机械学报, 2017, 48(8):270-278.
|
[6] |
陈卓, 高照良, 李永红, 等. 2种扰动土壤工程堆积体坡面泥沙运移特征比对研究[J]. 水土保持学报, 2020, 34(1):34-40.
|
[7] |
康宏亮, 王文龙, 薛智德, 等. 北方风沙区砾石对堆积体坡面径流及侵蚀特征的影响[J]. 农业工程学报, 2016, 32(3):125-134
|
[8] |
张志华, 聂文婷, 许文盛, 等. 不同水土保持临时措施下工程堆积体坡面减流减沙效应[J]. 农业工程学报, 2022, 38(1):141-150.
|
[9] |
赵满, 王文龙, 郭明明, 等. 不同砾石含量塿土堆积体坡面侵蚀特征研究[J]. 土壤学报, 2020, 57(5):1166-1176.
|
[10] |
史东梅, 蒋光毅, 彭旭东, 等. 不同土石比的工程堆积体边坡径流侵蚀过程[J]. 农业工程学报, 2015, 31(17):152-161.
|
[11] |
李建明, 牛俊, 王文龙, 等. 不同土质工程堆积体径流产沙差异[J]. 农业工程学报, 2016, 32(14):187-194.
|
[12] |
沙小燕, 王文龙, 娄义宝, 等. 不同土体类型工程堆积体坡面径流侵蚀动力差异[J]. 自然灾害学报, 2022, 31(6):191-199.
|
[13] |
张文博, 吕佼容, 谢永生, 等. 不同形态工程堆积体产流产沙对比研究[J]. 水土保持学报, 2020, 34(3):50-54.
|
[14] |
娄永才, 高照良, 李永红, 等. 不同上方来水模式下工程堆积体坡面的植被调控[J]. 农业工程学报, 2019, 35(24):144-153.
|
[15] |
张乐涛, 高照良, 田红卫. 工程堆积体陡坡坡面土壤侵蚀水动力学过程[J]. 农业工程学报, 2013, 29(24):94-102.
|
[16] |
张乐涛, 高照良, 李永红, 等. 黄土丘陵区堆积体边坡对上方来水的侵蚀响应[J]. 水科学进展, 2015, 26(6):811-819.
|
[17] |
牛耀彬, 吴旭, 高照良, 等. 降雨和上方来水条件下工程堆积体坡面土壤侵蚀特征[J]. 农业工程学报, 2020, 36(8):69-77.
|
[18] |
杜捷, 高照良, 王凯. 布设植物篱条件下工程堆积体坡面产流产沙过程研究[J]. 水土保持学报, 2016, 30(2):102-106.
|
[19] |
周涛, 苏正安, 刘刚才, 等. 工程堆积体典型生态修复措施对土壤侵蚀水动力过程的影响[J]. 农业工程学报 2022, 38(9):91-100.
|
[20] |
杨树云, 张铁钢, 张展, 等. 工程堆积体坡面不同植被格局的控蚀效果研究[J]. 水土保持学报, 2022, 36(4):121-127.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
陈渠昌, 雷廷武, 李瑞平. PAM对坡地降雨径流入渗和水力侵蚀的影响研究[J]. 水利学报, 2006, 37(11):1290-1296.
|
[27] |
白岗栓, 罗东, 苗庆丰, 等. PAM喷施量与施用方式对风沙土风蚀的影响[J]. 农业工程学报, 2020, 36(10):90-98.
|
[28] |
|
[29] |
|
[30] |
于健, 雷廷武,
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
陈渠昌, 江培福, 雷廷武, 等. 利用PAM防治松散扰动沙土风蚀效果的风洞试验研究[J]. 农业工程学报, 2006, 22(10):7-11.
|
[36] |
李元元, 王占礼. 聚丙烯酰胺(PAM)防治土壤风蚀的研究进展[J]. 应用生态学报, 2016, 27(3):1002-1008.
在我国西北地区,风蚀是造成土地退化的主要影响因素之一.聚丙烯酰胺(PAM)是一种高效的土壤结构改良剂.因其具有特殊的物理化学性质,可以与土壤作用而改善土壤表层结构,近年来一直受到人们的广泛关注.本文介绍了PAM的物理化学性质,详细论述了PAM对土壤风蚀量、起动风速的影响,及PAM在风蚀防治中的不同使用量、使用方法和效果,及其与其他材料的对比,并通过PAM对土壤物理性质的改善进一步分析PAM防治风蚀的机理.综合分析得出,虽然PAM在风蚀防治中存在一些问题,但作为一种固沙剂,它不仅能提高土壤抗风蚀的能力,而且也能改善土壤的物理性状,可为植物生长创造良好的水土条件;提出若在风蚀治理和改良城市环境中将PAM与植物种植相结合,将能大大提高植物的成活率、改善风蚀区的风蚀状况和生态环境工程建设的质量.因此,PAM在防治风蚀方面具有重要的现实意义和广阔的应用前景.
|
[37] |
李晓芸. 堆积体边坡稳定性研究[J]. 金属矿山, 2012(5):17-20.
|
[38] |
杨校辉, 陈昆全, 刁显锋, 等. 地震与降雨耦合作用下堆积体滑坡模型试验及稳定性研究[J]. 岩土工程学报, 2022, 44(Sup.1):58-62.
|
[39] |
翟淑花, 于家烁, 齐干, 等. 降雨入渗条件下堆积体边坡致灾因子试验分析[J]. 地质科技通报, 2023, 42(3):9-15.
|
[40] |
王颢霖, 焦菊英, 唐柄哲, 等. 陕北子洲“7·26”暴雨后坡耕地细沟侵蚀及其影响因素分析[J]. 农业工程学报, 2019, 35(11):122-130.
|
[41] |
郑粉莉. 细沟侵蚀量测算方法的探讨[J]. 水土保持通报, 1989, 9(4):41-45,49.
|
[42] |
韩凤朋, 郑纪勇, 李占斌, 等. PAM对土壤物理性状以及水分分布的影响[J]. 农业工程学报, 2010, 26(4):70-74.
|
[43] |
白岗栓, 邹超煜, 杜社妮, 等. 聚丙烯酰胺对干旱半干旱区不同作物水分利用及产值的影响[J]. 农业工程学报, 2015, 31(23):101-110.
|
[44] |
肖玉辉. 垄茶松散堆积体边坡加固防护技术研究[J]. 公路工程, 2014, 39(3):112-115,119.
|
[45] |
郭红霞. 松散堆积体边坡防排水技术研究[J]. 中外公路, 2010, 30(5):63-66.
|
[46] |
甘凤玲, 何丙辉, 王涛. 汶川震区滑坡堆积体降雨入渗产流特征人工模拟实验研究[J]. 水利学报, 2016, 47(6):780-788.
|
[47] |
|
[48] |
|
[49] |
High levels of turbidity and fine suspended sediments are often found in stormwater discharges from construction sites even when best management practices (BMPs) for sediment control are in place. This study evaluated turbidity reduction by three check dam types: 1) rock check dam representing a standard BMP, 2) excelsior wattle representing a fiber check dam (FCD), and 3) rock check dam wrapped with excelsior erosion control blanket (rock + excelsior ECB) representing an alternative FCD. Three check dams (all same type) were installed in a lined, 24-m ditch on a 5-7% slope and three consecutive simulated stormwater flows were run in the ditch. Additional tests were performed by adding granular polyacrylamide (PAM) on the check dams in the same manner using two sediment sources differing in clay content. Without PAM treatment, significantly higher effluent turbidity (>900 nephelometric turbidity units (NTU)) exited the ditch with rock check dams than with excelsior wattles or rock + excelsior ECBs (<440 NTU). The extent of sediment deposition between the check dam types was in the order of excelsior wattle > rock + excelsior ECB > rock check dam, indicating better water pooling behind the wattle. The PAM treatment reduced turbidity substantially (>75% relative to no PAM treatment) for all check dam types and it was very effective in excelsior wattles (<57 NTU) and rock + excelsior ECBs (<90 NTU) even during the third storm event. This study demonstrates that the passive treatment of runoff with PAM on FCDs (or rock + excelsior ECB) in construction site ditches can be very effective for sediment retention and turbidity reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.
|
[50] |
Addition of anionic polyacrylamide (PAM) to agricultural irrigation water can dramatically reduce erosion of soils. However, the toxicity of PAM to aquatic life, while often claimed to be low, has not been thoroughly evaluated. Five PAM formulations, including two oil-based products, one water-based product, one granular product and one tablet product, were evaluated for acute and/or chronic toxicity to five species commonly used for freshwater toxicity testing [Hyalella azteca (Saussure), Chironomus dilutus (Shobanov et al.), Ceriodaphnia dubia (Richard), Pimephales promelas (Rafinesque), and Selenastrum capricornutum (Printz)]. When applied as an oil-based product, acute toxicity was seen to four of the five species at concentrations less than the 10 mg/L that is often used for erosion control. Toxicity was diminished, but still remained, after passage of the irrigation water across an agricultural field, indicating a potential impact to nearby surface waters. Results from the non-oil-based products indicated minimal toxicity associated with PAM even at concentrations 10 times those used in agriculture when applied in the granular form, as a tablet, or in a water-based liquid. These data suggest that other agents in the oil-based products, such as surfactants or emulsifiers, rather than the PAM itself, contribute to the toxicity. Care is required in selecting an appropriate PAM formulation when the potential exists for entry of tailwater to nearby surface waters.
|
/
〈 |
|
〉 |