Green Impurity Detection of Flue-cured Tobacco Leaf Based on HSV

LIGengxin, ZANGChuanjiang, ZHAOXiangjiang, WANGDequan, DONGYushuang, GUMingguang, GAOYang, TANXinwei, MIAOZhuang, ZHAOXiqing, LIYang

Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (11) : 1-6.

PDF(1919 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1919 KB)
Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (11) : 1-6. DOI: 10.11923/j.issn.2095-4050.cjas2023-0225

Green Impurity Detection of Flue-cured Tobacco Leaf Based on HSV

Author information +
History +

Abstract

Through the analysis of the advantages and disadvantages of the sample processing methods and mainstream detection methods for the detection of flue-cured tobacco leaf impurities, a set of detection schemes that fully reflect the superiority and high comprehensive performance is proposed. The 256-band hyperspectral camera was used to obtain data information, and the RGB color space was mapped by calling the RGB band, and then converted to the HSV color space for detection of green and impurity content in tobacco leaves. The HSV color gamut range of green impurity was obtained through amounts of real experimental measurements, and the number of green and impurity pixels of the tobacco leaves to be tested was accurately given, and the proportion of green and impurity pixels in the flue-cured tobacco leaves was given. The precise labeling of green and impurity pixels of the flue-cured tobacco to be tested provided a visual detection results. Combined with the RGB tobacco leaves, the algorithm of green and impurity detection had strong interpretability. Meanwhile, the execution delay of the proposed detection algorithm was about 4 s. The flue-cured tobacco leaf green impurity detection scheme not only meets the actual acquisition needs, but also has high visualization and interpretability.

Key words

hue-saturation-value (HSV) / hyperspectral / green impurity detection / machine vision / automation

Cite this article

Download Citations
LI Gengxin , ZANG Chuanjiang , ZHAO Xiangjiang , et al . Green Impurity Detection of Flue-cured Tobacco Leaf Based on HSV[J]. Journal of Agriculture. 2024, 14(11): 1-6 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0225

References

[1]
张会娟, 胡志超, 谢焕雄, 等. 我国烟草的生产概况与发展对策[J]. 安徽农业科学, 2008, 36(32):14161-14162.
[2]
杨尚明, 徐刚, 杨宇峰, 等. 浅谈烤烟收购中的过程控制与质量管理[J]. 农业开发与装备, 2014(10):33-34.
[3]
何东健, 张海亮, 宁纪锋, 等. 农业自动化领域中计算机视觉技术的应用[J]. 农业工程学报, 2002, 18(2):171-175.
[4]
邹修国. 基于计算机视觉的农作物病虫害识别研究现状[J]. 计算机系统应用, 2011, 20(6):238-242.
[5]
王润涛, 张长利, 房俊龙, 等. 基于机器视觉的大豆籽粒精选技术[J]. 农业工程学报, 2011, 27(8):355-359.
[6]
周静远, 代建龙, 冯璐, 等. 我国现代棉花栽培理论和技术研究的新进展[J]. 塔里木大学学报, 2023, 35(2):1-12.
[7]
李锦卫, 管鹤卿, 廖桂平. 基于计算机视觉的油菜叶面积计算方法研究[J]. 农业网络信息, 2010(12):15-8.
[8]
梁淑敏, 杨锦忠. 计算机视觉技术在玉米上应用的研究进展[J]. 中国农学通报, 2006, 22(12):471-475.
[9]
毛鹏军, 贺智涛, 杜东亮, 等. 烤烟烟叶视觉检测分级系统的研究现状与发展趋势[J]. 农业机械, 2006(8B):43.
[10]
刘朝营, 许自成, 闫铁军. 机器视觉技术在烟草行业的应用状况[J]. 中国农业科技导报, 2011, 13(4):79-84.
[11]
杨文强, 李邦. 基于视觉实时性的CCD烟叶图像采集及处理系统的研究[J]. 中国农机化学报, 2013, 34(1):156-160.
[12]
李浩. 基于数字图像处理技术的烤烟烟叶自动分组模型研究[D]. 武汉: 华中农业大学, 2007.
[13]
肖玉娟. 基于反-透射图像的烟叶分级方法研究[D]. 洛阳: 河南科技大学, 2013.
[14]
陈楠, 冯慧琳, 杨艳东, 等. 烤烟叶片镉含量高光谱预测模型的构建[J]. 农业资源与环境学报, 2021, 38(4):570-575.
[15]
宾俊, 周冀衡, 范伟, 等. 基于NIR技术和ELM的烤烟烟叶自动分级[J]. 中国烟草学报, 2017, 23(2):60-68.
[16]
顾金梅, 吴雪梅, 陈永安, 等. 光照强度对烟叶颜色特征向量的影响[J]. 安徽农业大学学报, 2015, 42(2):322-326.
[17]
童德文, 陈钰, 杜超凡, 等. 开放环境下烟叶等级RGB图像智能识别及判别模型的构建[J]. 贵州农业科学, 2020, 48(3):131.
[18]
吴雪梅, 刘红芸, 王芳, 等. 基于改进Faster R-CNN网络的烟叶分级[J]. 计算机与数字工程, 2023, 51(6):1422-1427.
[19]
秦芝乾. 不同波段光源和光照强度对烟叶分级的影响研究[D]. 贵阳: 贵州大学, 2020.
[20]
马文杰, 贺立源, 徐胜祥, 等. 基于烤烟透射特征的烟叶图像分割研究[J]. 农业工程学报, 2006(7):134-137.
[21]
GANESAN P, SAJIV G.A comprehensive study of edge detection for image processing applications[A]. 2017 international conference on innovations in information, embedded and communication systems (ICIIECS)[C]. IEEE, 2017:1-6.
[22]
练文柳, 吴名剑, 孙贤军, 等. 不同预处理方法对烟草近红外光谱预测模型的影响[J]. 烟草科技, 2005(2):19-23.
[23]
SIGIT F M, SYAIFUDIN R, SURYANINGRUM D A.Disease detection system in tobacco leaves based on edge detection with decision tree classification method[A]. International seminar on business, education and science[C]. 2022:224-232.
[24]
MARZAN C S, RUIZ C R. Automated tobacco grading using image processing techniques and a convolutional neural network[J]. International journal of machine learning and computing, 2019, 9(6):807-813.
[25]
PAN S, KUDO M, TOYAMA J. Edge detection of tobacco leaf images based on fuzzy mathematical morphology[A]. 2009 first international conference on information science and engineering[C]. IEEE, 2009:1219-1222.
[26]
贾炳文. 基于机器视觉与深度学习的烟叶定级研究[D]. 昆明: 昆明理工大学, 2019.
[27]
邓晨曦. 基于智能识别技术的烟叶分级技术研究[J]. 经济师, 2020(3):291.
[28]
张龙, 马啸宇, 王锐亮, 等. 高光谱成像技术在烟叶和杂物分类中的应用[J]. 烟草科技, 2020, 53(8):72-78.
[29]
汪强, 席磊, 任艳娜, 等. 基于计算机视觉技术的烟叶成熟度判定方法[J]. 农业工程学报, 2012, 28(4):175-179.
PDF(1919 KB)

Accesses

Citation

Detail

Sections
Recommended

/