Responses of Soil Forming Environment, Genetic Properties and Soil Type to Land Use Change

ZHOUPing, XIAOHuacui, LIANGWandong, LUOFeixue, XIEMin, SHENGHao

Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (3) : 45-50.

PDF(1426 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1426 KB)
Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (3) : 45-50. DOI: 10.11923/j.issn.2095-4050.cjas2023-0259

Responses of Soil Forming Environment, Genetic Properties and Soil Type to Land Use Change

Author information +
History +

Abstract

High-intensity land conversion and persistent land use activities exert dual effects on soil development, which can significantly influence pedodiversity. We first reviewed the influences of various types of land use on the source of parent materials, microclimate, microrelief, vegetation cover, management practices and soil age. Then based on our systematical analyses of the effects of land use change on soil physical, chemical, and biological properties, we summarized the effects of land conversions on soil genetic, morphological, and diagnostic characteristics. We also comprehensively evaluated soil type evolution trends in different classification categories in response to land conversions. Finally, we proposed three research priorities: (1) an overall understanding of the effect of diverse land use activities on the soil properties and formation processes; (2) deep exploration of dynamic soil genetic responses to land cover conversions and modifications; (3) and development of new technologies for exact and high-efficiency identification of soil type change with land use change.

Key words

soil classification / high-intensity human activity / land conversion and modification / soil genetic property / soil-forming factor / land use patterns / soil diversity / soil formation processes / soil properties

Cite this article

Download Citations
ZHOU Ping , XIAO Huacui , LIANG Wandong , et al . Responses of Soil Forming Environment, Genetic Properties and Soil Type to Land Use Change[J]. Journal of Agriculture. 2025, 15(3): 45-50 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0259

References

[1]
AMUNDSON R, BERHE A A, HOPMANS J W, et al. Soil and human security in the 21st century[J]. Science, 2015,348:1261071.
[2]
李得成, 张甘霖. 中国土壤系统分类土系描述的难点与对策[J]. 土壤学报, 2016, 53(6):1563-1567.
[3]
GONG Z T, ZHANG GL, LUO G B. Diversity of anthrosols in China[J]. Pedosphere, 2009, 9(3):193-204.
[4]
CAPRA G F, GANGA A, GRILLI E, et al. A review of anthropogenic soils from a worldwide perspective[J]. Journal of soils and sediments, 2015,15:1602-1618.
[5]
HERRMANN D L, SCHIFMAN L A, SHUSTER W D. Widespread loss of intermediate soil horizons in urban landscapes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115:6751-6755.
[6]
Cooperative research group on Chinese soil taxonomy. Chinese soil taxonomy[M]. Beijing: China science Press. 2001.
[7]
NAETH A M, ARCHIBALD H A, NEMIRSKY C L, et al. Proposed classification for human modified soils in Canada: Anthroposolic order[J]. Canadian Journal of soil science, 2012, 92(1):7-18.
[8]
IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps[M]. 4thedition. International Union of Soil Sciences (IUSS),Vienna,Austria. 2018.
[9]
GALBRAITH J M. Human-altered and human-transported (HAHT) soils in the U.S. soil classification system[J]. Soil science and plant nutrition, 2018,64:1-10.
[10]
BOIXADERA J, ESTEBAN I, ALBERT R M, et al. Anthropogenic soils from Llanos de Moxos (Bolivia): Soils from pre-Columbian raised fields[J]. Catena, 2019,172:21-39.
[11]
FRASER J, TEIXEIRA W, FALCÃO N, et al. Anthropogenic soils in the Central Amazon: from categories to a continuum[J]. Area, 2011, 43(3):264-273.
[12]
JÜRGEN K, LUISE G, WENCESLAU T, et al. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration?[J]. Catena, 2019,172:104-112.
[13]
章明奎, 杨东伟. 南方丘陵地水改旱后土壤发生学性质与类型的变化[J]. 土壤通报, 2013, 44(4):786-792.
[14]
ZENERO M D O, SILVA L F S, CASTILHO S C P, et al. Characterization and classification of soils under forest and pasture in an agroextractivist project in Eastern Amazonia[J]. Revista brasileira de ciência do solo, 2016,40:e0160165.
[15]
SHENG H, ZHOU P, ZHANG Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J]. Soil biology and biochemistry, 2015,88:148-157.
[16]
JUILLERET J, DONDEYNE S, VANCAMPENHOUT K, et al. Mind the gap: A classification system for integrating the subsolum into soil surveys[J]. Geoderma, 2016,264:332-339.
[17]
XIONG M, SUN R, CHEN L. A global comparison of soil erosion associated with land use and climate type[J]. Geoderma, 2019,343:31-39.
[18]
杨玉盛. 杉木林可持续经营的研究[M]. 北京: 中国林业出版社, 1998.
[19]
陈修颖, 叶华, 李超群. 洞庭湖流域花岗岩地区的水土流失特征及其防治对策[J]. 水土保持学报, 2007(4):72-76+84.
[20]
PIELKE SR R A, ADEGOKE J, BELTRAÁN-PRZEKURAT A, et al. An overview of regional land-use and land-cover impacts on rainfall[J]. Tellus B: chemical and physical meteorology, 2007,59B:587-601.
[21]
SHENG H, YANG Y S, YANG Z J, et al. The dynamic response of soil respiration to land-use changes in subtropical China[J]. Global change biology, 2010, 16(3):1107-1121.
[22]
KLLI R. Influence of land use change on fabric of humus cover (pro Humus form)[J]. Applied soil ecology, 2018,123:737-739.
[23]
AHIRWAL J, MAITI S K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India[J]. Catena, 2016,140:155-163.
[24]
SENCINDIVER J C, AMMONS J T, Barnhisel R I. Minesoil genesis and classification[J]. Agronomy monograph, 2000,41:595-613.
[25]
BARUCK J, NESTROY O, SARTORI G, et al. Soil classification and mapping in the Alps: The current state and future challenges[J]. Geoderma, 2016,264:312-331.
[26]
XIAO H, SHENG H, ZHANG L, et al. How does land-use change alter soil microbial diversity, composition, and network in subtropical China?[J]. Catena, 2023,231:107335.
[27]
DUAN L, SHENG H, CHEN G, et al. Land use conversion and lithology impacts soil aggregate stability in subtropical China[J]. Geoderma, 2021,389:114953.
[28]
张高玲, 谢红霞, 盛浩, 等. 亚热带山区红壤可蚀性对土地利用变化的响应[J]. 长江科学院院报, 2022, 39(2):63-69.
为探究土地利用方式变化对表层土壤可蚀性的影响,分别在湖南省湘东大围山和湘西小溪国家级自然保护区选取现有4种典型土地利用方式(天然林及由其转变而来且紧邻的杉木林、果园和坡改梯耕地),分析土地利用方式发生转变后表层土壤理化性质差异,选择Torri.D模型计算土壤可蚀性K值,利用系统聚类法对本研究采样点和江西鹰潭中国科学院红壤生态试验站不同研究小区的土壤理化性质进行聚类分析,并以实测数据对本研究计算的K值进行校正。结果表明:①湘东和湘西地区天然林转变为杉木林、果园和坡改梯耕地后表层土壤砂粒含量较本地区天然林增加,土壤机械组成呈粗骨化趋势。②湘西地区各土地利用方式的表层土壤有机碳含量均高于湘东地区同类型土地利用方式,且土地利用方式由天然林发生转变后,其他土地利用类型表层土壤有机碳含量均小于本地区天然林。③湘东地区天然林及其开垦7 a后不同土地利用方式土壤可蚀性K值表现为:杉木林>天然林>果园(坡改梯)>坡改梯耕地;湘西地区天然林及其开垦10 a以上不同土地利用方式的土壤可蚀性K值表现为:坡改梯耕地>果园>杉木林>天然林。土地利用方式发生变化后,土壤可蚀性因微地形的改变以及种植作物的年限不同会发生不同程度的变化,采取水土保持措施对土壤状况有一定改善。
[29]
KETTERINGS Q M, BIGHAM J M. Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia[J]. Soil science society of America journal, 2000, 64(5):1826-1833.
[30]
WANI S A, NAJAR G R, ALI T, et al. Morphology, genesis and classification of pear growing soils of Pulwama district in Lesser Himalayas of temperate Kashmir[J]. Journal of environmental biology, 2016, 37(5):1021-1027.
[31]
潘博, 段良霞, 张凤, 等. 红壤剖面土壤养分对土地利用变化响应的敏感性[J]. 生态学杂志, 2018, 37(9):2707-2716.
为了解红壤剖面土壤养分及其有效形态的分布以及对高强度土地利用的响应,本研究选取位于湘东大围山低丘陵地带同一景观单元内花岗岩红壤发育的4种毗邻的典型土地利用方式(包括樟树天然林以及由此转变而来的杉木人工林、板栗园和坡耕地),采用自制土钻以20 cm等间隔采集0~100 cm土壤样品,测定各土层的pH、有机质、大量元素(全氮、全磷、全钾)及其有效态(碱解氮、有效磷、速效钾)、中量(钙、镁)和微量元素(铁、锰、铜、锌)有效态的含量,并计算不同养分的敏感性指数(SI),分析土壤养分对土地利用变化响应的敏感性。结果表明,天然林地改为其他土地利用方式,0~100 cm土壤剖面有机质、全氮含量分别降低9%~55%和28%~57%,全磷含量则升高0.3~52倍,高强度的人类活动(如施肥)导致土壤剖面有机质和全氮的损失,但却引起磷素的累积。较之土壤全量养分(SI介于-0.6~1.5),有效态养分含量(SI介于-0.8~51.8)对土地利用变化的响应更为敏感。土壤有效磷(SI介于-0.8~51.8)、速效钾(SI介于-0.5~2.9)、有效态铁(SI介于-0.6~3.1)、有效态铜(SI介于-0.8~2.2)含量对土地利用变化以正响应为主,反映土地利用方式的转变提高了土壤剖面上养分的有效性。与表土相比,花岗岩红壤底土有效态养分(如碱解氮、有效磷、速效钾、有效态锰、锌)含量对土地利用变化的响应更敏感。不能简单地将不同土地利用方式浅层表土养分的研究结论外推到深层底土,应重视土地利用变化引起的底土养分(尤其是有效态和中、微量元素)的演变趋势。
[32]
OLIVEIRA N C, PASCHOAL A R, PAULA R J, et al. Morphological analysis of soil particles at multiple length-scale reveals nutrient stocks of Amazonian Anthrosols[J]. Geoderma, 2018,311:58-66.
[33]
徐晋玲, 朱志锋, 黄传琴, 等. 江汉平原不同利用方式下土壤有机质与粘粒矿物的交互作用[J]. 矿物学报, 2014, 34(1):47-52.
[34]
POPE G A, RUBENSTEIN R. Anthroweathering: Theoretical framework and case study for human-impacted weathering[J]. Geoarchaeology: An international journal, 1999, 14(3):247-264.
[35]
SCHMIDT M J, PY-DANIEL A R, DE PAULA MORAES C, et al. Dark earths and the human built landscape in Amazonia: a widespread pattern of anthrosol formation[J]. Journal of archaeological science, 2014,42:152-165.
[36]
ROSSITER D G. Classification of urban and industrial soils in the world reference base for soil resources[J]. Journal of soils and sediments, 2007, 7(2):96-100.
[37]
RESÉNDIZ-PAZ M L, GUTIÉRREZ-CASTORENA M C, GUTIÉRREZ-CASTORENA E V, et al. Local soil knowledge and management of Anthrosols: A case study in Teoloyucan, Mexico[J]. Geoderma, 2013,193:41-51.
[38]
PAPA G L, ANTISARI L V, VIANELLO G, et al. Soil interpretation in the context of anthropedogenic transformations and pedotechniques application[J]. Catena, 2018,166:240-248.
[39]
吴克宁, 高晓晨, 查理思, 等. 河南省典型含有人工制品土壤的系统分类研究[J]. 土壤学报, 2017, 54(5):1091-1101.
[40]
姚玉才, 邱志腾, 陈小梅, 等. 水耕人为土长期改旱后土壤类型演变的探讨[J]. 土壤通报, 2016, 47(5):1029-1035.
[41]
杨东伟, 徐秋桐, 章明奎. 水田改雷竹林后土壤发生学性质和土壤类型的演变[J]. 土壤通报, 2014, 45(4):777-782.
[42]
徐颖菲, 姚玉才, 章明奎. 全年淹水种植茭白对水田土壤性态的影响[J]. 土壤通报, 2019, 50(1):15-21.
[43]
张文凯. 南疆典型土系调查与土地利用[D]. 北京: 中国地质大学, 2017.
[44]
何毓蓉, 崔鹏, 廖超林, 等. 西部山区道路建设毁损土地的退化及其环境效应II.川藏公路典型路段地区的土壤退化与土壤系统分类[J]. 生态环境, 2006, 15(3):555-558.
PDF(1426 KB)

Accesses

Citation

Detail

Sections
Recommended

/