The Relationship Between Plant Species Diversity and Sampling Area in Lawn Ecosystems

PENGXinxin, LIUXianbin, DINGJian, ZHOUJueding, GAODi, LIUShoumei

Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (4) : 49-60.

PDF(1449 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1449 KB)
Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (4) : 49-60. DOI: 10.11923/j.issn.2095-4050.cjas2024-0024

The Relationship Between Plant Species Diversity and Sampling Area in Lawn Ecosystems

Author information +
History +

Abstract

To analyze the correlation between plant species diversity and sampling area in different types of artificial lawn ecosystems, this study used a nested sampling method to track and investigate the plant species diversity of six commonly used artificial lawn ecosystems in China constructed by six different turf grasses. Two experimental treatments of manually removing weeds (MRW) and maintaining natural state (MNS) were set, and the changing patterns of plant species diversity with the increasing sampling area were analyzed. The results showed that the plant species diversity in the six different types of lawn ecosystems treated with MRW was significantly lower than that in the MNS experimental research plot, and the difference between these two experimental treatments became gradually greater as the sampling area increased, indicating that MRW management measures had a significant effect on maintaining the singularity of plant species and the evenness of plant growth in various types of lawn ecosystems. Both plant species diversity in the unit area and change rate of plant species diversity with the increased sampling area gradually decreased with the increase of construction years, indicating that the material cycle and energy flow inside the ecosystems tended to be stable, and the plant species composition and the functional structure of lawn ecosystems both were in the dynamic equilibrium states with the development and succession of lawn ecosystems. However, the maintenance mechanisms of this dynamic equilibrium state were different in the two experimental treatments of MRW and MNS, the former was that the regular artificial impurity removal management measure inhibited weed invasion and growth, while the latter was that the dominant plant species suppressed the growth and reproduction of the other types of plant species. The research results indicated that although various management measures had a strong intervention intensity on the lawn ecosystems, they still could not completely eliminate the continuous invasion and interference of various weeds; in the early stage of lawn construction, the ecosystem was unstable, and the frequency and intensity of management measures such as MRW should be increased; entering the mid- to late-stage, as the species composition and structural function of the lawn ecosystem tended to stabilize with the increase of construction years, the degree of manual intervention could be appropriately reduced, and the mutual constraint between the various components of the ecosystem could be fully utilized to manage the lawn for improving the quality of the lawn and reducing the amount of manual labor.

Key words

Cynodon dactylon / Agrostis stolonifera / Lolium perenne / Buchloe dactyloides / Festuca elata / Trifolium repens / manually removing weeds / ecosystem / species diversity / artificial turf / sampling area / establishment year / management measures

Cite this article

Download Citations
PENG Xinxin , LIU Xianbin , DING Jian , et al . The Relationship Between Plant Species Diversity and Sampling Area in Lawn Ecosystems[J]. Journal of Agriculture. 2025, 15(4): 49-60 https://doi.org/10.11923/j.issn.2095-4050.cjas2024-0024

References

[1]
张倩. 浅谈城市草坪的功能[J]. 吉林农业(学术版), 2010,7:170.
[2]
韩金玲. 论草坪在城市园林绿化中的作用[J]. 黑龙江科技信息, 2017,9:282.
[3]
IGNATIEVA M, AHRNÉ K, WISSMAN J, et al. Lawn as a cultural and ecological phenomenon: a conceptual framework for transdisciplinary research[J]. Urban forestry & urban greening, 2015,14:383-387.
[4]
马进, 李宪友, 孟瑾, 等. 我国暖地型草坪草育种概况及前景展望[J]. 草业科学, 2003,4:73-76.
[5]
卢少云, 陈斯平, 陈斯曼, 等. 三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化[J]. 园艺学报, 2003,3:303-306.
[6]
邢强, 秦俊, 胡永红. 不同践踏强度对3种暖季型草坪草的影响[J]. 草业学报, 2022,2:52-61.
[7]
王志宏. 草坪病虫害的发生种类及综合防治技术[J]. 现代农村科技, 2023,9:39-40.
[8]
奚惠良, 徐淑芳. 园林草坪景观设计运用[J]. 现代园艺, 2016,2:50-51.
[9]
HATFIELD J. Turfgrass and climate change[J]. Agronomy journal, 2017, 109(4):1708-1718.
[10]
DELDEN L V, LARSEN E, ROWLINGS D, et al. Establishing turf grass increases soil greenhouse gas emissions in peri-urban environments[J]. Urban ecosystems, 2016,19:749-762.
[11]
李世鹏, 张云胜. 盐碱地草坪建植与管理技术刍议[J]. 现代园艺, 2012,16:43,45.
[12]
荣浩, 阿比亚斯, 珊丹, 等. 矿山废弃地人工草地调亏灌溉试验研究[J]. 水土保持通报, 2022,6:54-60.
[13]
周全民, 韩涛, 付宗斌, 等. 张掖市道路绿地禾本科草坪草种选择[J]. 绿色科技, 2009(1):56-57.
[14]
尹海侠, 高秀丽. 浅谈高速公路绿化草坪品种的选择[J]. 现代园林, 2005,11:58.
[15]
SEARLS T, ZHU X, MCKENNEY D W, et al. Assessing the influence of climate on the growth rate of boreal tree species in northeastern Canada through long-term permanent sample plot data sets[J]. Canadian journal of forest research, 2021, 51(7):1039-1049.
[16]
BUCHMANN T, SCHUMACHER J, EBELING A, et al. Connecting experimental biodiversity research to real-world grasslands[J]. Perspectives in plant ecology, evolution and systematics, 2018,33:78-88.
[17]
DUTT N, TANWAR T. Nitrous oxide emissions from turfgrass lawns as a result of fertilizer application: a meta-analysis of available literature[J]. Current science, 2020, 118(8):1219-1226.
[18]
董世魁, 汤琳, 王学霞, 等. 青藏高原高寒草地植物多样性测定的最小样地面积[J]. 生物多样性, 2013, 21(6):651-657.
为科学设定青藏高原地区草地植物多样性研究的样地面积, 提高研究结果的精确性, 本研究拟合研究了7种模型, 分别筛选出高寒草甸、高寒草原和高寒荒漠3种草地类型的最优拟合模型, 并基于种-面积曲线计算各类草地植物多样性估测的适宜样地面积。结果表明: (1)非饱和曲线模型较适宜拟合青藏高原地区的种-面积关系; (2)3类高寒草地健康样地的最小面积均大于退化样地; (3)对于高寒草甸, 健康样地和退化样地的最小面积分别为108 m<sup>2</sup>和82 m<sup>2</sup>; 对于高寒草原, 健康样地和退化样地的最小面积分别为130 m<sup>2</sup>和81 m<sup>2</sup> ; 对于高寒荒漠, 健康样地和退化样地的最小面积分别为60 m<sup>2</sup>和41 m<sup>2</sup>。
[19]
袁自强, 魏盼盼, 高本强, 等. 取样尺度对亚高寒草甸物种多样性与生产力关系的影响[J]. 植物生态学报, 2012, 36(12):1248-1255.
植物物种多样性与生产力之间的关系是群落生态学的一个热点问题, 目前仍存在着很多争议。为探究自然群落中二者之间的关系, 对青藏高原亚高寒草甸3个样地的自然植物群落分别进行了不同取样面积的抽样调查。结果显示, 取样样地和取样尺度均对物种丰富度有显著影响, 取样样地而非取样尺度对群落地上生物量有显著性影响。在某一时刻对某一样地进行取样, 其单位面积生产力并不因取样面积的增加而提高, 而是保持恒定的, 尽管物种数随取样面积的增加而有明显增多。物种多样性与生产力之间的回归关系因样地与取样尺度不同而不同, 有U型、单峰型、正线性相关和无相关性, 其中无相关性出现的最多。据此推测, 亚高寒草甸群落物种多样性与生产力之间不存在某种确定性关系, 或者说, 亚高寒草甸物种多样性和生产力之间不存在必然的因果联系。
[20]
WHEELER M M, NEILL C, GROFFMAN P M, et al. Continental-scale homogenization of residential lawn plant communities[J]. Landscape and urban planning, 2017,165:54-63.
[21]
LIU X B, LI Y, KONG L Q, et al. Roots, litter, and seasonal drought together inhibit plant growth in the herbaceous layer in a subtropical moist forest of southwestern China[J]. Forests, 2023,14:712.
[22]
韩晓敏. 草坪草退化原因及其管理措施[J]. 现代农村科技, 2014,13:51.
[23]
HEMPSON G P, ARCHIBALD S, BOND W J, et al. Ecology of grazing lawns in Africa[J]. Biological reviews, 2015, 90(3):979-994.
[24]
罗笑梅. 草坪的病虫害防治[J]. 上海农业科技, 2008,3:109-110.
[25]
KNOT P, HRABE F, HEJDUK S, et al. The impacts of different management practices on botanical composition, quality, colour and growth of urban lawns[J]. Urban forestry & urban greening, 2017, 26(6):178-183.
[26]
江南, 徐卫华, 赵娟娟, 等. 城市植物地面抽样调查方法综述[J]. 云南大学学报(自然科学版), 2021, 43(3):587-597.
[27]
平晓燕, 王铁梅. 植物化感作用的生态学意义及在草地生态系统中的研究进展[J]. 草业学报, 2018, 27(8):175-184.
植物化感作用会在不同的研究尺度影响生态学过程,也被认为是生物入侵的重要作用机制,近年来成为生态学领域的研究热点。目前针对化感物质的分离、鉴定、释放途径及作用机理和化感作用的应用潜力等方面已开展了大量的研究工作,但对化感作用在不同时空尺度生态学过程中的具体作用和贡献及在草地生态系统中的研究进展还缺乏深入系统地概述,限制了对化感作用生态学意义的准确理解。笔者综述了近年来化感作用在不同尺度生态学过程特别是草地生态系统中的研究进展,从化感作用与种间竞争的区分与联系、化感作用对群落物种组成、群落演替及生物入侵等生态学过程的影响入手阐述了植物化感作用的生态学意义,总结了草地生态系统中化感作用的研究现状。基于当前植物化感作用研究存在的问题和争议,提出未来的研究应重点关注化感作用的室内观测结果与野外群落或生态系统水平观测结果的对比分析、区域乃至全球尺度的化感作用研究及化感作用在草本植物防御过程中的作用机制等方面。
[28]
THOMPSON G L, KAO-KNIFFIN J. Applying biodiversity and ecosystem function theory to turfgrass management[J]. Crop science, 2017, 57(S1):238-248.
[29]
MATHEW S. Role of turfgrass in urban landscapes[J]. Journal of plant development sciences, 2021, 13(5):247-256.
[30]
黄团冲, 贺康宁, 王先棒, 等. 北川河流域森林冠层结构对林下植被多样性的影响[J]. 中国水土保持科学, 2018,4:106-114.
[31]
张星元, 张璐, 马丁, 等. 不同冠层结构下的植物生长型与生活型特征[J]. 中南林业科技大学学报(自然科学版), 2018,7:37-44.
[32]
MARTEN S N, BRESHEARS D D, MEYER C W. Spatial distributions of understory light along the grassland/forest continuum: effects of cover, height, and spatial pattern of tree canopies[J]. Ecological modelling, 2000, 126(1):79-93.
[33]
PILON N A L, DURIGAN G, RICKENBACK J, et al. Shade alters savanna grass layer structure and function along a gradient of canopy cover[J]. Journal of vegetation science, 2021, 32(1):e12959.
[34]
叶楠, 刘慧, 罗琦, 等. 华南地区固氮与非固氮豆科树种叶片养分利用策略的对比研究[J]. 热带亚热带植物学报, 2023,3:334-340.
[35]
陈晓熹, 杨新东, 曾献兴, 等. 环境因子对青云山自然保护区森林群落物种分布的影响[J]. 生态学杂志, 2019, 38(12):3642-3650.
阐明物种分布与环境因子间的相互关系是深入研究森林群落的基础与前提。本文基于青云山自然保护区14个固定样地的调查数据,通过双向指示种分析(TWINSPAN)、冗余分析(RDA)、蒙特卡洛检验(Monte Carlo)、变差分解等方法探讨该区物种分布与环境因子的相互关系。结果表明:(1)TWINSPAN将14个固定样地划分为黧蒴锥+米槠群落、苦竹+硬壳桂群落、广东杜鹃+水仙柯群落、木荷+毛棉杜鹃花群落和杉木+毛竹群落5个群落类型;(2)RDA排序和Monte Carlo检验表明,海拔、土壤全钙、土壤含水量、pH、土壤阳离子交换量和速效磷是影响群落物种分布的主要环境因子;(3)变差分解结果显示,10个环境因子总解释量为85.2%,其中地形因子对物种分布的解释部分为16.2%,土壤因子对物种分布的解释部分为62.3%,地形因子和土壤因子对物种分布共同解释的部分为6.7%,未能解释的部分为14.8%,反映了群落物种分布主要受环境因素的影响,生物间的相互作用及随机因素的影响较小。
[36]
BERNHARDT-RÖMERMANN M, BAETEN L, CRAVEN D, et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales[J]. Global change biology, 2015, 21(10):3726-3737.
[37]
蔡鸿宇, 郑凯. 苏州地区草坪杂草调查及综合防治技术研究[J]. 农业灾害研究, 2012,7:17-18,41.
[38]
赵建华. 我国观赏草坪杂草状况及防治进展[J]. 昆明学院学报, 2011,3:102-105.
[39]
吴斌, 何玲. 基于森林生态系统演替的木荷-马尾松林种群生态位研究[J]. 林业科技情报, 2023,4:26-28.
[40]
王储, 闫玉春, 蔡育蓉, 等. 呼伦贝尔草甸草原退耕后不同恢复期植物多样性变化[J]. 中国农业资源与区划, 2022,6:197-206.
[41]
李辉, 甄晓云, 丘道健. 玉元高速公路绿化养护与草坪退化研究[J]. 云南现代交通, 2005,3:9-14.
[42]
谭永钦, 张国安, 郭尔祥. 草坪杂草生态位研究[J]. 生态学报, 2004,6:1300-1305.
[43]
HAHN D, SALLENAVE R, PORNARO C, et al. Managing cool-season turfgrass without herbicides: optimizing maintenance practices to control weeds[J]. Crop science, 2020, 60(5):2204-2220.
[44]
蔡新成, 唐庄生, 董瑞, 等. 放牧对中国草地植物群落物种多样性的影响[J]. 草原与草坪, 2024, 44(1):122-130.
[45]
王敏, 张鲜花, 袁小强, 等. 干扰程度对典型草原植物群落数量特征及物种多样性的影响[J]. 草原与草坪, 2023, 43(4):122-129.
PDF(1449 KB)

Accesses

Citation

Detail

Sections
Recommended

/