
Study on Light-temperature Model of Rice in Yutai and Yield Forecast
ZHUYuqing, LIHuazhao
Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (4) : 83-91.
Study on Light-temperature Model of Rice in Yutai and Yield Forecast
The aims were to study the growth and development law of Yutai rice under different accumulated temperature conditions, and to explore the influence of sunshine hours and temperature in different growth stages on the yield factors of Yutai rice, and to provide agricultural meteorological service basis for optimal planting of rice in Yutai area. A Logistic growth model was constructed based on the growth index data of Yutai rice from 2017 to 2022 and meteorological factors such as accumulated temperature during growth period. By using statistical methods such as correlation analysis and regression analysis, the influence of light and temperature in different growth stages on rice yield factors was analyzed, and the prediction model of yield factors was established accordingly. The results showed that the overall accuracy of Logistic model was high in the simulation of rice growth and development in Yutai, and the Root Mean Square Error (RMSE) between the simulated value and the measured value was between 0.591 and 5.100, the Normalized Root Mean Squared Error (nRMSE) was between 0.087 and 0.107, and the R2 between the simulated value and the measured value was between 0.970 and 0.996. The number of sunshine hours in tillering, jointing, booting and grain filling maturity of rice was significantly correlated with yield, and the accumulated temperature in heading and grain filling maturity was significantly correlated with yield. The prediction model of rice yield and grain number per ear was established by multiple linear regression method, which was verified by historical band and histogram. The prediction model has high accuracy.
Yutai rice / accumulated temperature / growth model / correlation analysis / regression analysis / historical generation / modelling verification / yield forecasting model / yield factor
[1] |
刘延刚, 刘丽娟. 鱼台大米的地理标志特征、独特生产方式及品牌建设策略[J]. 北方水稻, 2021, 51(2):54-58.
|
[2] |
田虎. 鱼台县农业优势特色产业发展存在的问题及建议[J]. 现代农业科技, 2015(24):293-294.
|
[3] |
陆佳岚, 马成, 陶明煊, 等. 不同光温条件对水稻9311产量及品质的影响[J]. 江苏农业学报, 2020, 36(3):535-543.
|
[4] |
李秀芬, 贾燕, 黄元才, 等. 播栽期对水稻产量和产量构成因素及生育期的影响[J]. 生态学杂志, 2004, 23(5):98-100.
|
[5] |
王萌萌, 杨沈斌, 江晓东, 等. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 2016, 42(1):82-92.
|
[6] |
陈杨. 有效积温与夏玉米生长发育和氮磷钾积累定量化研究[D]. 北京: 中国农业科学院, 2021.
|
[7] |
段光俊, 赵家松, 刘振洋, 等. 基于有效积温的生菜生长模型构建[J]. 北方园艺, 2024(6):9-16.
|
[8] |
|
[9] |
郑大玮, 孙忠富. 关于积温一词及其度量单位科学性问题的讨论[J]. 中国农业气象, 2010, 31(2):165-169.
|
[10] |
|
[11] |
石楠, 高志强, 陈崇怡, 等. 基于Logistic模型水稻地上部干物质与叶面积指数模拟与分析[J]. 东北农业大学学报, 2022, 53(3):10-18.
|
[12] |
苏李君, 刘云鹤, 王全九. 基于有效积温的中国水稻生长模型的构建[J]. 农业工程学报, 2020, 36(1):162-174.
|
[13] |
毛留喜, 魏丽. 大宗作物气象服务手册[M]. 北京: 气象出版社,2015:1-278.
|
[14] |
罗丕. 气象因子对小麦生长发育及品质性状的影响[D]. 长沙: 湖南农业大学, 2009.
|
[15] |
彭菊, 张上都, 伍祥, 等. 温光条件对不同类型水稻品种叶龄和生育期的影响[J]. 现代农业科技, 2016(16):14-20.
|
[16] |
中国气象局. 农业气象观测规范(上卷)[M]. 北京: 气象出版社,1993:1-212.
|
[17] |
薛晓萍. 棉花临界氮浓度稀释模型确定及其应用研究[D]. 南京: 南京农业大学, 2007.
|
[18] |
张翠英, 吕令华, 樊献政, 等. 油用牡丹种子采摘始期预报模型研究[J]. 农学学报, 2021, 11(9):85-91.
为探讨油用牡丹种子成熟采摘期受气象条件影响的变化规律,依据菏泽市2008—2019年油用牡丹物候观测资料和生育期间气温、光照及降水量等气象要素,利用Microsoft Office Excel 2013、DPS统计软件,采取相关分析、回归分析、滑动平均等数理统计方法,分析了气象条件对油用牡丹生长及种子成熟期的影响。结果表明:油用牡丹花期年变化趋势和种子采摘始期年变化趋势基本一致,个别年份因出现特别的气候异常除外;影响种子采摘始期的气象因子主要是温度,包括平均气温、积温、最高最低日较差等,相关性达显著性检验。光照、湿度、降水等与种子采摘始期相关不显著,但这些气象因子对牡丹生长的影响不容忽视;选取相关显著的气象因子,采用回归方法,建立了油用牡丹种子采摘始期预报模型,分别于7月11日、7月21日制作并发布种子采摘始期预报。模型历史回代,并对2019、2020年进行预报检验(允许误差均在±1天),准确率均为100%,拟合和试报效果较为理想,研究结果可为花农适时采摘优质牡丹种子提供科学参考依据。
|
[19] |
摆虹霞. 基于不同水分条件下的日光温室黄瓜生长模型研究[D]. 银川: 宁夏大学, 2021.
|
[20] |
|
[21] |
|
[22] |
杨东, 段留生, 谢华安, 等. 花前光照亏缺对水稻物质积累及生理特性的影响[J]. 中国生态农业学报, 2011, 19(2):347-352.
|
[23] |
|
[24] |
唐卷, 汤永禄, 李朝苏, 等. 基于分位数回归模型分析小麦千粒重与气候因子的关系[J]. 西南农业学报, 2014, 27(3):943-949.
|
/
〈 |
|
〉 |