Study on Soil Acidification Characteristics, Acid Buffering Performance and Lime Demand in Citrus Orchards in Western Zhejiang

ZHANGYuanyuan, DINGZhifeng, ZHANGMingkui

Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (8) : 30-38.

PDF(1260 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(1260 KB)
Journal of Agriculture ›› 2025, Vol. 15 ›› Issue (8) : 30-38. DOI: 10.11923/j.issn.2095-4050.cjas2024-0101

Study on Soil Acidification Characteristics, Acid Buffering Performance and Lime Demand in Citrus Orchards in Western Zhejiang

Author information +
History +

Abstract

To understand the characteristics of citrus orchard soil acidification in western Zhejiang for providing reference for citrus orchard acid soil improvement and sustainable development, 26 citrus orchards in western Zhejiang were selected for soil investigation. The composition of soil exchangeable acids, acid buffering capacity and their relationship with soil properties were analyzed. The applicability of five lime demand estimation methods, namely SMP buffer method, exchangeable acid neutralization estimation method, calcium hydroxide mixed titration method, calcium chloride exchange calcium hydroxide neutralization titration method and estimation method based on soil physical and chemical properties, were evaluated with reference to the lime demand determined by soil lime adding cultivation method. The results showed that the soil pH of the investigated orchard was pH 3.11-6.52, and 88.5% of the soil pH was lower than the suitable growth range of citrus (pH 5.0-6.5). The soil pH (pH 4.80) developed from purple sandstone was higher than that of other parent materials, followed by the soil developed from diluvium (pH 4.41), river alluvium (pH 4.36), quartz sandstone (pH 4.24) and acid rock (pH 4.23). The content of exchangeable acid in the soils was 0.05-6.66 cmol/kg, and the content of hydrolytic acid was 2.24-16.05 cmol/kg. The content of potential acids in the soils developed from purple sandstone, river alluvium and diluvium were relatively low. Soil acid buffer capacity was significantly positively correlated with free iron oxide content, cation exchange capacity, exchangeable calcium, total base ions, and base saturation (P<0.05), and negatively correlated with soil exchangeable Al3+content (P<0.05). Among them, soil exchangeable calcium and free iron oxide contributed the most to soil acid buffer capacity. Soil developed from purple sandstone had higher exchangeable calcium and free iron oxide content, so the buffer capacity was higher. With the increase of garden age, the contents of active acid and potential acid increased, while exchangeable base and soil acid buffer capacity decreased. The results with different estimation methods of lime demand showed that SMP method was more accurate in estimating the soil with higher lime demand, and the calcium hydroxide mixed titration method had the highest linear correlation with the results of incubation experiments. These two methods were relatively suitable for the estimation of soil lime demand of orange orchards in western Zhejiang.

Key words

western Zhejiang / citrus orchard / acid soil / acid buffer capacity / lime application rate

Cite this article

Download Citations
ZHANG Yuanyuan , DING Zhifeng , ZHANG Mingkui. Study on Soil Acidification Characteristics, Acid Buffering Performance and Lime Demand in Citrus Orchards in Western Zhejiang[J]. Journal of Agriculture. 2025, 15(8): 30-38 https://doi.org/10.11923/j.issn.2095-4050.cjas2024-0101

References

[1]
ALEKSEEVA T, ALEKSEEV A, XU R K, et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China[J]. Environmental geochemistry and health, 2011, 33(2):137-148.
The effect of a tea plantation on soil basic properties, chemical and mineralogical compositions, and magnetic properties of Alfisols from eastern China was studied. Under the tea plantation, acidification took place within a soil depth of 70 cm, with the maximum difference in pH in the upper 17 cm (ΔpH = 2.80). Both the tea plantation and unused soil profiles were predominated by free Fe and Al oxides, i.e. citrate/bicarbonate/dithionite extractable Fe (Fe(d)) and Al (Al(d)). Tea plantation soil was characterized by higher Al(d) and Fe(d) and lower Fe oxalate, Fe(2)O(3) and Al(2)O(3); CaO was depleted, whereas SiO(2) accumulated. Acidification induced by the tea plantation led to destruction of vermiculite followed by dissolution of the hydroxy-Al interlayers within its structure. The data clearly demonstrated that significant soil weathering occurred with acidification caused by tea cultivation. This acidification also resulted in decreased content of ferrimagnetic minerals due to the dissolution of minerals and movement of Fe in the profile.
[2]
徐仁扣, 赵安珍, 姜军. 酸化对茶园黄棕壤CEC和粘土矿物组成的影响[J]. 生态环境学报, 2011, 20(10):1395-1398.
[3]
KAZUO S, AKIRA T. Acidity neutralization mechanism in a forested watershed in Central Japan[J]. Water, air, and soil pollution, 1996, 88(3-4).
[4]
力军, 青长乐, 牟树森. 模拟酸雨对土壤化学及蔬菜生长的影响[J]. 农业环境科学学报, 1993, 12(1):17-20.
[5]
李致博. 土壤酸化对养分淋失、微生物多样性及柑橘生长的影响[D]. 福州: 福建农林大学, 2020.
[6]
张影, 胡承孝, 谭启玲, 等. 施用石灰对温州蜜柑树体营养和果实品质及酸性柑橘园土壤养分有效性的影响[J]. 华中农业大学学报, 2014, 33(4):72-76.
[7]
ANJUM S A, AAHRAF U, TANVEER M, et al. Drought tolerance in three maize cultivars is related to differential osmolyte accumulation, antioxidant defense system, and oxidative damage[J]. Frontiers in plant science, 2017, 6(9):2026-2032.
[8]
温明霞, 鹿连明, 王鹏, 等. 浙江省柑橘园土壤养分调查[J]. 浙江农业科学, 2019, 60(2):208-211.
对浙江省78个柑橘园0~30 cm土壤样本进行分析,了解柑橘园的土壤养分现状,为合理施肥提供基础数据。结果表明:52.6%的土壤样本pH值适合柑橘生长,47.4%柑橘园的土壤pH值<4.8,酸性较强;11.6%的土壤样本有机质含量较低;85.9%和69.2%的土壤样本磷、钾盈余; 56.4%、59.0%和60.3%的土壤样本交换性钙、镁、硼缺乏;97.4%、59.0%、96.2%和51.3%的土壤样本有效铁、锰、铜、锌过量。建议土壤酸性较强的柑橘园适当施用碱性肥料,并加强钙、镁、硼肥的施用。
[9]
郑铭洁, 余红伟, 陈志良, 等. 浙西丘陵区柑橘园土壤健康状况及管理对策[J]. 浙江农业科学, 2022, 63(2):324-329.
柑橘是浙西地区重要的经济作物,在浙江省水果生产中占有重要地位,但区内柑橘产量和品质参差不齐。为了解浙西丘陵柑橘园土壤健康状况,从浙西丘陵区选择了38个代表性柑橘园,从土壤物理、土壤化学、土壤生物学及土壤环境质量等方面观测了30余项指标,解析了该地柑橘园土壤障碍因子。基于对柑橘园土壤质量指标的全面分析和主成分综合分析,可以把影响浙西柑橘园土壤健康的评价指标归纳为表层土壤酸度因子、表层土壤有机碳因子、亚表层土壤物理因子、表层土壤速效养分因子和表层土壤镉污染因子5个方面;该地的土壤障碍主要表现在酸化明显、有机质不足、土体紧实、养分缺乏与不平衡及镉轻度污染。为消除这些障碍,提出了施用石灰降酸克服土壤化学障碍因子、施用有机改良剂克服生物学障碍因子、深耕结合培肥克服土壤物理障碍因子、推广平衡施肥和因缺补缺施肥技术提高土壤养分水平、采用安全利用技术解决部分果园镉污染问题等柑橘园土壤健康管理对策。
[10]
AITKEN R L. Relationships between extractable Al, selected soil properties, pH buffer capacity and lime requirement in some acidic Queensland soils[J]. Soil research, 1992, 30(2):23-34.
[11]
沈月, 依艳丽, 张大庚, 等. 耕地棕壤酸碱缓冲性能及酸化速率研究[J]. 水土保持学报, 2012, 26(1):95-100.
[12]
LI J, XU R, ZHANG H. Iron oxides serve as natural anti-acidification agents in highly weathered soils[J]. Journal of soils and sediments, 2012, 12(6):876-887.
[13]
李博, 赵琼, 毛兵, 等. 我国东部主要类型土壤酸缓冲能力的影响因素[J]. 生态学杂志, 2021, 40(12):3901-3910.
[14]
BOLAN N S, ADRIANO D C, CURTIN D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability[J]. Advances in agronomy, 2003, 78:215-272.
[15]
STENBERG M, STENBERG B, RYDGERG T. Effects of reduced tillage and liming on microbial activity and soil properties in a weakly-structured soil[J]. Applied soil ecology, 2000, 14(2):135-145.
[16]
SHOEMAKER H E, MCLEAN E O, PRATT P F. Buffer methods for determining lime requirement lime requirement of soils with appreciable amounts of extractable aluminum[J]. Soil science society of America journal, 1961, 25(4):274-277.
[17]
周杨, 项佳敏, 姚岳良, 等. 缙云县典型酸化农田土壤石灰需求量估算浅议[J]. 浙江农业科学, 2020, 61(12):2508-2510.
采用氯化钙交换-氢氧化钙滴定法(滴定法)、土壤酸碱缓冲曲线法(缓冲曲线法)、交换性酸计算法和水解性酸计算法评估了缙云县典型酸化土壤的石灰需求量,并与培养试验法的估算结果进行对比。结果表明,不同方法计算的石灰需求量有较大的差异。与培养试验法估算结果相比,缓冲曲线法和交换性酸计算法估算的石灰需求量偏低,而水解性酸计算法的估算结果偏高,滴定法的估算结果与培养法接近。缙云县平原耕地土壤的酸缓冲容量明显低于低丘红壤,相应地,其降酸处理的石灰需求量也低于相似酸度的红壤。校治酸性土壤的石灰需求量随土壤黏粒含量和有机质含量的增加而增加。
[18]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[19]
鲍士旦. 土壤农化分析(3版)[M]. 北京: 中国农业出版社, 2000.
[20]
刘莉, 程永毅, 李忠意, 等. 拟合方式对酸碱滴定法测定土壤酸缓冲容量准确性的影响[J]. 土壤学报, 2022, 59(2):1-9.
[21]
张天彬, 涂仕华, 冯文强, 等. 四川酸性土壤石灰需求量方法的比较研究[J]. 生态环境, 2003, 12(1):63-65.
[22]
RUEHLMANN J, BONECKE E, MEYER S. Predicting the lime demand of arable soils from pH value, soil texture and soil organic matter content[J]. Agronomy-basel, 2021, 11(4):34-47.
[23]
SHIRAZI M A, BOERSMA L, HART J W. A unifying quantitative-analysis of soil texture- improvement of precision and extension of Scale[J]. Soil science society of america journal, 1988, 52(1):181-190.
[24]
谢志南, 庄伊美, 王仁玑, 等. 福建亚热带果园土壤pH值与有效态养分含量的相关性[J]. 园艺学报, 1997, 24(3):4-9.
[25]
何腾兵, 董玲玲, 刘元生, 等. 贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J]. 水土保持学报, 2006, 20(6):157-162.
[26]
FUJII K, HARTONO A, FUNAKAWA S, et al. Acidification of tropical forest soils derived from serpentine and sedimentary rocks in East Kalimantan, Indonesia[J]. Geoderma, 2011, 160(3-4):311-323.
[27]
梁珊珊. 我国柑橘主产区氮磷钾肥施用现状及减施潜力研究[D]. 武汉: 华中农业大学, 2017.
[28]
刘丽, 张玉龙, 虞娜, 等. 基于GIS的辽宁北部地区土壤酸化特征及其原因分析—以昌图县为例[J]. 沈阳农业大学学报, 2012, 43(2):173-178.
[29]
TONG D L, XU R K. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from Southern China[J]. Journal of environmental sciences, 2012, 24(4):682-689.
[30]
李歆博, 林伟杰, 李湘君, 等. 琯溪蜜柚园土壤酸化特征研究[J]. 经济林研究, 2020, 38(1):169-176.
[31]
AITKEN R L, MOODY P W. The effect of valence and ionic-strength on the measurement of pH buffer capacity[J]. Australian journal of soil research, 1994, 32(5):975-984.
[32]
谭智勇, 谌潇雄, 刘杰, 等. 贵州铜仁市植烟土壤pH特征及其酸化驱动因子分析[J]. 西南大学学报(自然科学版), 2021, 43(10):52-57.
[33]
刘莉, 谢德体, 李忠意, 等. 酸性紫色土的阳离子交换特征及其对酸缓冲容量的影响[J]. 土壤学报, 2020, 57(4):887-897.
[34]
LI W, WANG L, LIU F, et al. Effects of Al3+doping on the structure and properties of goethite and its adsorption behavior towards phosphate[J]. Journal of environmental sciences, 2016, 45(2):18-27.
[35]
TAO L, LI F B, LIU C S, et al. Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China[J]. Catena, 2019, 174:227-234.
[36]
MCLEAN E O, DUMFORD S W, CORONEL F. a comparison of several methods of determining lime requirements of soils[j]. Soil science society of america proceedings, 1966, 30(1):26.
[37]
GODSEY C B, PIERZYNSKI G M, MENGEL D B, et al. Evaluation of common lime requirement methods[J]. Soil science society of America journal, 2007, 71(3):843-850.
PDF(1260 KB)

Accesses

Citation

Detail

Sections
Recommended

/