PDF(1425 KB)
Effects of Summer Thermal Resources on Growth Stages and Yield of Rice in Cold-Region Under New Climate State
WANGQiujing, MAGuozhong, JIANGLixia, CHUZheng, YULan, YANPing
Journal of Agriculture ›› 2026, Vol. 16 ›› Issue (1) : 90-98.
PDF(1425 KB)
PDF(1425 KB)
Effects of Summer Thermal Resources on Growth Stages and Yield of Rice in Cold-Region Under New Climate State
To investigate the variations in summer heat resources across Heilongjiang Province under the new climate state (1991-2020) and their impacts on the growth period and yield of cold-region rice, this study utilized 30-year datasets encompassing climatic observation records, rice phenological monitoring data, and yield statistics from 10 agro-meteorological experimental stations. Employing the linear trend rate method, linear regression analysis, and the Hodrick-Prescott (HP) filter, we analyzed the change characteristics of key thermal factors in summer, including ≥10℃ active accumulated temperature, mean temperature, and maximum/minimum temperatures, and their associations with rice phenological progression and yield components. The results showed that the summer heat resources in Heilongjiang Province from 1991 to 2020 had shown a significant upward trend. The tendency rate of active accumulated temperature of ≥10℃ was 36.89℃/10 a, and the increase in the minimum temperature was the largest, at 0.30℃/10 a. The increases in average temperature and maximum temperature were 0.15℃/10 a and 0.14℃/10 a respectively. From the perspective of the growing season dates, the heading date of rice showed a highly significant trend of advancing (with a tendency rate of -4.8 days per 10 years, P<0.01), while the milk-ripe stage and the maturity stage fluctuated relatively less. In terms of the length of the growing season, the heading stage, the milk stage and the reproductive growth period all showed a highly significant trend of extension (P<0.01). Over the past 30 years, the actual yield, trend yield, and meteorological yield of rice in Heilongjiang Province all exhibited a consistent increasing trend, with linear tendency rates of 804 kg per decade, 775 kg per decade, and 29 kg per decade, respectively. Among the thermal factors, mean temperature showed a highly significant correlation with the heading stage (P<0.01), while minimum temperature was highly significantly correlated with both the heading stage and milk-ripe stage (P<0.01). For every 1℃ increase in the mean temperature anomaly, the meteorological yield of rice increased by 110.87 kg per hectare. This study demonstrates that the enhancement of summer thermal resources under the new climate state (1991-2020) serves as the core climatic driver for the prolonged growth period and increased yield of cold-region rice. These findings provide a scientific basis for the efficient utilization of climatic resources and the optimization of variety distribution for cold-region rice cultivation.
thermal resources / variation characteristics / rice in cold-region / growth stages / yield
| [1] |
苏勃, 高学杰, 效存德, 等. IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读[J]. 气候变化研究进展, 2019, 15(4):395-404.
|
| [2] |
康丽娟, 巴特尔·巴克, 罗那那, 等. 1961—2013年新疆气温和降水的时空变化特征分析[J]. 新疆农业科学, 2018, 55(1):123-133.
【目的】 利用新疆65个气象站1961~2013年的日平均气温和日降水量资料,分析新疆近53 a来气温和降水的时空变化规律。【方法】 采用线性倾向率法,分析新疆1961~2013年以来气温和降水量,在时间序列上,用增减趋势累积距平法和Mann-Kendall突变检验法,对比分析新疆年均温和年降水量的突变情况,采用反距离加权插值法对新疆各站点的气候倾向率进行插值。【结果】 1961~2013年以来,在时间变化上,新疆年均温和降水量均呈显著上升趋势,气候倾向率分别为0.324℃/10 a(P<0.01)和16.238 mm/10 a(P<0.01),且突变分别发生在1993和1983年。四季平均气温和降水量也呈现增高的趋势,其中冬季增温幅度最大,为0.39℃/10 a;夏季降水量增多幅度最大,为4.799 mm/10 a。新疆年均温、年降水量、四季均温和四季降水量的年代际变化均呈现出明显的增加趋势。在空间变化上,东疆、北疆西部和北部增温明显;北疆、南疆克孜勒苏柯尔克孜自治州、喀什地区西部和和田地区东部降水量明显增多。【结论】 新疆气温、降水在时间和空间上均呈增加趋势,呈现出暖湿化现象。
|
| [3] |
IPCC. AR6 Synthesis Report: Climate Change 2023[EB/OL].(2007-11-17)[2014-03-28]. http://www.ipcc.ch.
|
| [4] |
中国气象局气候变化中心. 中国气候变化蓝皮书2021[M]. 北京: 科学出版社,2021:16-25.
|
| [5] |
陈鹏狮, 米娜, 张玉书, 等. 气候变化对作物产量影响的研究进展[J]. 作物杂志, 2009(2):5-9.
|
| [6] |
|
| [7] |
赵先丽, 蔡福, 丁抗抗, 等. 锦州地区春玉米物候变化趋势及其与水热条件的关系[J]. 气象与环境学报, 2022, 38(5):64-71.
|
| [8] |
|
| [9] |
王修兰. CO2、气候变化与农业[M]. 北京: 气象出版社,1996.
|
| [10] |
侯伟, 杨昌贤, 官满元, 等. 海口市气候变化对水稻生育期和产量的影响[J]. 广东农业科学, 2017, 44(8):145-150.
|
| [11] |
周曙东, 周文魁. 气候变化对长三角地区农业生产的影响及对策[J]. 浙江农业学报, 2009, 21(4):307-310.
|
| [12] |
刘二华, 周广胜, 武炳义, 等. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5):1305-1315.
作物生殖生长期长度与作物产量和品质密切相关。为深入探究作物生殖生长期长度(reproductive growth period lengths, RGLs)对气候变化和技术进步的响应, 基于1981—2010年长江中下游地区单季稻生殖生长期和气象数据, 量化不同RGLs (孕穗期—抽穗期(booting to heading, BDHD)、抽穗期—乳熟期(heading to milking, HDMS)、乳熟期—成熟期(milking to maturity, MSMD)和孕穗期—成熟期(booting to maturity, BDMD))对平均温度(mean temperature, TEM)、累积降水量(cumulative precipitation, PRE)和累积日照时数(cumulative sunshine duration, SSD)的敏感性, 并分离气候变化和技术进步对不同RGLs的影响。结果表明, 1981—2010年长江中下游地区单季稻BDMD呈延长趋势(0.24 d a<sup>-1</sup>), 其中, HDMS延长趋势最明显(0.16 d a<sup>-1</sup>)。气候因子中高温和寡照不利于单季稻不同RGLs延长, 其中, TEM对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为-50.0%、-50.7%和-21.9%, SSD对BDHD、HDMS和MSMD变化趋势的平均相对贡献分别为-47.2%、-48.7%和-67.6%。技术进步弥补了气候变化对不同RGLs变化趋势的不利影响。研究表明, 技术进步可能是当前单季稻稳产高产和趋利避害的主要手段, 未来可以采用较长生殖生长期和耐热性品种来适应持续的气候变化。
|
| [13] |
李伟光, 侯美亭, 张京红, 等. 华南主产区双季水稻物候变化及其与气候条件的关系[J]. 中国农业气象, 2021, 42(12):1020-1030.
|
| [14] |
丹野久. 全球变暖对日本寒地北海道2030年代水稻生育的影响预测及其对策[J]. 粮油食品科技, 2022, 30(5):85-98.
|
| [15] |
雷秋良, 徐建文, 姜帅, 等. 气候变化对中国主要作物生育期的影响研究进展[J]. 中国农学通报, 2014, 30(11):205-209.
|
| [16] |
高孟霜, 许吟隆, 殷红, 等. 1992—2012年东北水稻生育期变化分析[J]. 气候变化研究进展, 2018, 14(5):495-504.
|
| [17] |
张卫建, 陈金, 徐志宇, 等. 东北稻作系统对气候变暖的实际响应与适应[J]. 中国农业科学, 2012, 45(7):1265-1273.
【目的】明确气候变暖对作物生产的实际影响,降低对未来粮食安全预测的不确定性。【方法】依据东北水稻生产和气候变化的长期观测数据,并结合田间开放式增温试验(free air temperature increase,FATI),系统研究稻作系统对气候变暖的实际响应与适应。【结果】历史数据分析发现,近几十年来东北水稻单产与其生长季的气温呈明显递增趋势,相关显著,但与降水量变化相关不显著。理论推算表明,水稻生长季最低气温升高1℃,水稻单产可提高6.0%以上。田间试验发现,在目前的气温背景下,水稻冠层气温升高1℃,单产可提高10%左右。近四十年来东北水稻新品种的生育期每10年约延长3 d,与近二十年来田间观测到的水稻实际生育期延长幅度基本一致,达5 d左右;与1970年相比,2010年黑龙江省的水稻种植面积扩大了24倍,种植重心向北位移了近110 km,与东北水稻生长季≥10℃有效积温带北移的幅度一致。【结论】气候变暖对东北水稻的直接增产效应显著,稻作系统可以通过品种改良、栽培改进和区域调整等策略来逐步适应气候变化的趋势。在应对气候变化的稻作制度调整上,应充分挖掘增温的增产效应及作物系统的适应潜力,调整时机和幅度应适当迟后于预测的气候变化进程。在气候变暖的大趋势下,要注意因水稻生育期延长和种植区域北扩而可能遭遇的低温冷害等极端性天气。
|
| [18] |
IPCC. Climate Change 2007: Synthesis Report of the IPCC Fourth Assessment Report: Summary for Policymakers[EB/OL].(2007-11-17)[2014-03-28]. http://www.ipcc.ch.
|
| [19] |
王译爽. 东北平原热量变化与水稻产量关系的研究进展[J]. 林业科技情报, 2021, 53(4):132-136.
|
| [20] |
吕金莹. 松嫩平原热量和降水变化特征及对作物产量的影响[D]. 哈尔滨: 东北农业大学, 2019.
|
| [21] |
侯雯嘉, 耿婷, 陈群, 等. 近20年气候变暖对东北水稻生育期和产量的影响[J]. 应用生态学报, 2015, 26(1):249-259.
为探究近20年气候变暖对东北地区水稻生育期和产量的影响,利用东北三省近20年水稻生育期、产量数据和气候观测数据,采用数理统计等方法进行分析.结果表明: 1989—2009年东北三省水稻生长季日平均温度、最高温度和最低温度均呈上升趋势,降水量均呈下降趋势.与1990s相比,2000s黑龙江、吉林和辽宁三省水稻全生育期分别延长了14、4.5和5.1 d.东北地区5、6和9月温度升高可延长水稻全生育期,而7月温度升高则缩短生育期.除黑龙江省外,东北地区的审定品种和观测站点水稻生育期均呈相似的变化趋势,审定品种生育期的延长是导致观测站点水稻生育期延长的主要原因.东北地区日平均温度、最低温度和最高温度的变化均会影响水稻产量,温度上升对黑龙江省的增产效应较明显,尤其是三江平原以西地区.除辽宁省南部以外,其他地区升温均表现为增产.东北地区可以采取育种、栽培和耕作等措施充分挖掘水稻适应气候变暖的能力.
|
| [22] |
|
| [23] |
|
| [24] |
A better understanding of recent crop yield trends is necessary for improving the yield and maintaining food security. Several possible mechanisms have been investigated recently in order to explain the steady growth in maize yield over the US Corn-Belt, but a substantial fraction of the increasing trend remains elusive. In this study, trends in grain filling period (GFP) were identified and their relations with maize yield increase were further analyzed. Using satellite data from 2000 to 2015, an average lengthening of GFP of 0.37 days per year was found over the region, which probably results from variety renewal. Statistical analysis suggests that longer GFP accounted for roughly one-quarter (23%) of the yield increase trend by promoting kernel dry matter accumulation, yet had less yield benefit in hotter counties. Both official survey data and crop model simulations estimated a similar contribution of GFP trend to yield. If growing degree days that determines the GFP continues to prolong at the current rate for the next 50 years, yield reduction will be lessened with 25% and 18% longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0, respectively. However, this level of progress is insufficient to offset yield losses in future climates, because drought and heat stress during the GFP will become more prevalent and severe. This study highlights the need to devise multiple effective adaptation strategies to withstand the upcoming challenges in food security.© 2018 John Wiley & Sons Ltd.
|
| [25] |
田宝星, 于敏, 李浩然, 等. 黑龙江省夏季低温指数时空分布特征及对粮食产量的影响[J]. 江苏农业科学, 2018, 46(18):293-297.
|
| [26] |
张婧莉, 吴秀兰, 姚俊强, 等. 新、旧气候态的差异及其对新疆气候评价业务的影响[J]. 沙漠与绿洲气象, 2023, 17(5):134-141.
|
| [27] |
李帅, 杜春英. 黑龙江农业气象应用服务手册[M]. 哈尔滨: 东北林业大学出版社, 2012.
|
| [28] |
高亮之. 水稻气象生态[M]. 北京: 中国农业出版社,1992.
|
| [29] |
淮贺举, 李存军, 李奇峰, 等. 东北地区春玉米物候期时空动态变化特征[J]. 玉米科学, 2019, 27(1):81-86.
|
| [30] |
张宁. 中国极端气温和降水趋势变化研究[D]. 南京: 南京信息工程大学, 2007.
|
| [31] |
任修琳, 李宏亮, 张玉虎, 等. 2000—2015年三江平原主要作物需水量特征及影响因素分析[J]. 干旱区地理, 2019, 42(4):854-866.
|
| [32] |
胡毅, 李萍, 杨建功. 应用气象学[M]. 北京: 气象出版社, 2005.
|
| [33] |
赵俊芳, 穆佳, 郭建平. 近50年东北地区≥10℃农业热量资源对气候变化的响应[J]. 自然灾害学报, 2015, 24(3):190-198.
|
| [34] |
王桂芝, 陆金帅, 陈克垚, 等. 基于HP滤波的气候产量分离方法探讨[J]. 中国农业气象, 2014(2):195-199.
|
| [35] |
曲曼丽. 农业气候实习指导——农业气候分析方法30例[M]. 北京: 北京农业大学出版社,1991.
|
| [36] |
矫江. 黑龙江省水稻低温冷害研究进展[M]. 北京: 中国农业科学技术出版社, 2009.
|
| [37] |
郭建平, 马树庆. 农作物低温冷害监测预测理论和实践[M]. 北京: 气象出版社, 2009.
|
| [38] |
赵宏伟, 张妍, 贾琰, 等. 分蘖期低温胁迫下施用外源物质对寒地粳稻生长发育及产量形成的影响[J]. 东北农业大学学报, 2018, 49(8):10-23.
|
| [39] |
张山清, 普宗朝, 冯志敏, 等. 气候变暖对新疆棉花种植气候适宜性分区的影响[J]. 沙漠与绿洲气象, 2023, 17(5):168-175.
|
| [40] |
Crop phenology change is co-determined by climate change and adaptation strategies, such as crop management, but their combined and isolated impacts on rice phenology are still unclear. Quantifying the impacts and identifying the main contributors are critical to food security under climate change. Thus, we distinguished and quantified the relative contribution of climate change and crop management to rice (Oryza sativa L.) phenological changes in China from 1981 to 2010, using a first-difference multivariate regression method.Rice phenology has changed over the past 30 years in China. The mean length of the phenological stage from emergence to transplanting was shortened, whereas the mean length of the stage from transplanting to heading, from heading to maturity was prolonged. The relative contribution of crop management was greater than that of climate change for single and late rice, which took up over 90% of the total change in certain phenology stages. Among the climatic factors, temperature was the dominant contributor for which accounted for more than 50% of the change of rice phenology. The stage from transplanting to heading of early rice and late rice had strongly negative sensitivities to the increasing temperature.Crop management has offset the adverse effects of climate change on single and early rice phenology in China over the past 30 years to some extent, while further adaptation measures such as adjusting sowing date, shifting rice varieties, applying nitrogen fertilizer, and irrigation, should be applied to late rice in southern China, especially in a warmer future. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.
|
| [41] |
李荣平, 周广胜, 史奎桥, 等. 1980—2005年玉米物候特征及其对气候的响应[J]. 安徽农业科学, 2009, 37(31):15197-15199,15267.
|
| [42] |
王治海, 金志凤, 邬定荣, 等. 双季早晚稻不同发育阶段日数对温度变化的敏感性比较[J]. 中国农业气象, 2018, 39(3):185-194.
|
| [43] |
|
| [44] |
|
/
| 〈 |
|
〉 |