Position Identification of Fresh Tobacco Leaf Based on Resnet and Support Vector Machine Fusion Recognition Network

LIChanggen, LIKe, ZHAODongfang, ZHANGShuai, MENGXiangyu, LINYong, WEIShuo, WANGTingxian

Journal of Agriculture ›› 2026, Vol. 16 ›› Issue (1) : 57-64.

PDF(2320 KB)
Home Journals Journal of Agriculture
Journal of Agriculture

Abbreviation (ISO4): Journal of Agriculture      Editor in chief: Shiyan QIAO

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2320 KB)
Journal of Agriculture ›› 2026, Vol. 16 ›› Issue (1) : 57-64. DOI: 10.11923/j.issn.2095-4050.cjas2024-0180

Position Identification of Fresh Tobacco Leaf Based on Resnet and Support Vector Machine Fusion Recognition Network

Author information +
History +

Abstract

This study aims to achieve digital recognition of fresh tobacco leaf harvesting positions and meet the demand for rapid, non-destructive identification in intelligent curing. A hybrid network model (R-SVM) integrating Resnet-50 and support vector machine (SVM) is proposed for fresh tobacco leaf position recognition. Based on the features of different convolutional layers (layers 1, 10, 22, 40, 49) of fresh tobacco leaf images extracted by the pre-trained Resnet-50 network model, combined with different pooling methods [average pooling (AVP), global average pooling (GAP) and spatial pyramid pooling (SPP)] and dimensionality reduction algorithms [principal component analysis (PCA) and ReliefF], support vector machines (SVM) were trained respectively and different recognition models of fresh tobacco leaf harvesting positions were screened out, and then different model fusion strategies (hard voting, soft voting, Stacking method) were used to obtain the final recognition model of fresh tobacco leaf position. The results indicated that different pooling methods exhibited distinct impacts on model performance. In low-level convolution layers, SPP pooling significantly improved model accuracy by over 10%, while its effect was minimal on models trained using features from high-level convolution layers. PCA dimensionality reduction effectively enhanced recognition performance across all convolutional layers. The 40th layer output model in different convolution layers had the highest accuracy rate on the test set, which was 92.12%. The model obtained by the Stacking fusion method had the best performance, and the accuracy rate on the test set was 96.83%. The fusion recognition model for fresh tobacco leaf position established in this study can achieve accurate and non-destructive identification of tobacco leaf positions.

Key words

residual network / support vector machine / model fusion / fresh tobacco leaves position / classification

Cite this article

Download Citations
LI Changgen , LI Ke , ZHAO Dongfang , et al . Position Identification of Fresh Tobacco Leaf Based on Resnet and Support Vector Machine Fusion Recognition Network[J]. Journal of Agriculture. 2026, 16(1): 57-64 https://doi.org/10.11923/j.issn.2095-4050.cjas2024-0180

References

[1]
李运国, 杜杏蓉, 赵正雄, 等. 清香型烟叶成熟期间不同部位外观表征差异研究[J]. 山东农业科学, 2021, 53(3):50-54.
[2]
赵光伟, 孙广玉, 阎秀峰, 等. 烤烟成熟时栅栏组织与海绵组织厚度比值的变化[J]. 湖北农业科学, 2007(2):265-267.
[3]
李卫, 肖遂, 周冀衡, 等. 不同品种烤烟各部位烟叶成熟过程中非挥发性有机酸含量的变化[J]. 中国烟草科学, 2010, 31(4):44-47.
[4]
夏春, 李寒雪, 孙觅, 等. 烤烟不同部位叶片超微结构与常规化学成分的关系[J]. 湖南农业大学学报(自然科学版), 2020, 46(2):150-156.
[5]
牛浩, 李静浩, 李鹏程, 等. 不同部位采后烟叶颜色变化差异与能量代谢的关系[J]. 河南农业科学, 2022, 51(4):171-180.
[6]
杨会仙, 范美勋. 烤烟交接部位烟叶混级原因分析及解决措施[J]. 农业技术与装备, 2021(2):53-54.
[7]
赵晨. 基于计算机视觉和高光谱成像融合技术的鲜烟叶部位识别方法研究[D]. 郑州: 河南农业大学, 2023.
[8]
李中皓, 毛健, 曹培健, 等. 数字化转型:中国烟草科技创新发展的必然选择[J]. 烟草科技, 2022, 55(1):1-8.
[9]
庄珍珍, 祝诗平, 孙雪剑, 等. 基于机器视觉的烟叶自动分组方法[J]. 西南师范大学学报(自然科学版), 2016, 41(4):122-129.
[10]
申振宇, 申金媛, 刘剑君, 等. 基于神经网络的特征分析在烟叶分级中的应用[J]. 计算机与数字工程, 2012, 40(7):122-124.
[11]
赵晨, 王涛, 郭伟雄, 等. 基于机器视觉的烤烟烟叶部位的智能识别[J]. 湖南农业大学学报(自然科学版), 2023, 49(4):405-411.
[12]
赵晨, 赵浩斌, 路晓崇, 等. 基于轮廓纹理特征和线性判别分析的鲜烟叶部位识别方法[J]. 河南农业科学, 2022, 51(10):161-168.
[13]
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[A].// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C]. 2016:770-778.
[14]
李善军, 胡定一, 高淑敏, 等. 基于改进SSD的柑橘实时分类检测[J]. 农业工程学报, 2019, 35(24):307-313.
[15]
谢为俊, 魏硕, 郑招辉, 等. 深度多分支模型融合网络的胡萝卜缺陷识别与分割[J]. 农业工程学报, 2021, 37(2):177-186.
[16]
徐淼, 朱波, 刘宇晨, 等. 基于改进MaskR-CNN的多片烟叶部位的同步识别[J]. 湖南农业大学学报(自然科学版), 2023, 49(2):170-175.
[17]
KOK Z H, MOHAMED S A R, ALFATNI M S M, et al. Support vector machine in precision agriculture: A review[J]. Computers and electronics in agriculture, 2021, 191:106546.
[18]
代国威, 陈稼瑜, 樊景超. 融合ResNet与支持向量机的葡萄园冠层图像叶片覆盖度分类[J]. 江苏农业学报, 2023, 39(8):1713-1721.
[19]
WANG G, ZHENG H, LI X. ResNeXt: A novel strawberry appearance quality identification method based on ResNeXt network and support vector machine[J]. Journal of food measurement and characterization, 2023, 17(5):4345-4356.
[20]
高亚琪, 王昊, 刘渊晨. 图像语义特征的探索及其对分类的影响研究[J]. 情报科学, 2021, 39(10):107-117.
[21]
邸慧慧, 史宏志, 张国显, 等. 不同肥力水平对烤烟各部位烟叶中性香气成分含量的影响[J]. 河南农业大学学报, 2010, 44(3):255-261.
[22]
章宇珍, 王云, 程朋乐, 等. 基于颜色特征和支持向量机的焦栀子炮制程度识别方法[J]. 中华中医药杂志, 2023, 38(8):3768-3772.
[23]
董绍江, 谭浩, 刘超, 等. 改进YOLOv5s的桥梁表观病害检测方法[J]. 重庆大学学报, 2024, 47(9):91-100.
[24]
张天亮, 张东兴, 崔涛, 等. 基于支持向量机和ReliefF算法的玉米品种抗倒伏预测[J]. 农业工程学报, 2021, 37(20):226-233.
[25]
赵静, 闫春雨, 杨东建, 等. 基于无人机多光谱遥感的台风灾后玉米倒伏信息提取[J]. 农业工程学报, 2021, 37(24):56-64.
[26]
张伏, 张方圆, 崔夏华, 等. 高光谱成像结合PSO-SVM的银杏果种类鉴别[J]. 光谱学与光谱分析, 2024, 44(3):859-864.
[27]
杨红云, 郭紫微, 郭高飞, 等. 基于Stacking集成卷积神经网络的水稻氮素营养诊断[J]. 植物营养与肥料学报, 2023, 29(3):573-581.
[28]
张宏鸣, 陈丽君, 刘雯, 等. 基于Stacking集成学习的夏玉米覆盖度估测模型研究[J]. 农业机械学报, 2021, 52(7):195-202.
[29]
刘潭, 朱洪锐, 袁青云, 等. 基于多模型融合策略的温室番茄光合速率预测方法[J]. 农业机械学报, 2024, 55(4):337-345.
[30]
修春波, 孙乐乐. 基于改进YOLOv4网络的马铃薯自动育苗叶芽检测方法[J]. 农业机械学报, 2022, 53(6):265-273.
PDF(2320 KB)

Accesses

Citation

Detail

Sections
Recommended

/