2024 , Vol. 14 >Issue 4: 93 - 100
DOI: https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0214
Research Progress of Application of Ground Penetrating Radar Technology in Soil Properties Detection
Received date: 2023-09-22
Revised date: 2024-01-11
Online published: 2024-04-17
Ground Penetrating Radar (GPR) is recognized for its rapid, non-invasive technology in medium and small-scale near-earth sensing. It has been widely applied in soil property analysis due to its considerable data richness, high resolution and excellent spatial continuity. This article presented a comprehensive review of the principles underlying GPR’s use in soil property detection, elaborated on forward simulation methods and the prevalent soil dielectric models in use. It summarized the current advancements in applying GPR technology for assessing various soil properties, including moisture content, texture, stratification, compaction, and salinity. Additionally, the paper discussed the challenges and limitations in the field applications: the influence factors of field detection were complex, and the data interpretation was complex and subjective, most of the researches only stayed in the qualitative or semi-quantitative stage. Concluding perspective, the article pointed out that with ongoing advancements in signal processing and theoretical research, GPR held significant potential for future innovations in soil characteristic exploration. This work aimed to serve as a valuable resource for ongoing and future studies on the application of GPR in soil property investigation.
FU Meiling , ZHU Xiangming , DUAN Wenbiao . Research Progress of Application of Ground Penetrating Radar Technology in Soil Properties Detection[J]. Journal of Agriculture, 2024 , 14(4) : 93 -100 . DOI: 10.11923/j.issn.2095-4050.cjas2023-0214
表1 常见的土壤物质在100 MHz时的介电常数与电导率取值 |
物质材料 | 静态电导率σs/(mS/m) | 相对介电常数εr |
---|---|---|
干黏土 | 1~100 | 2~20 |
湿黏土 | 100~1000 | 15~40 |
干沙土 | 0.1~100 | 4~6 |
湿沙土 | 10~100 | 15~30 |
干沃土 | 0.1~1 | 4~6 |
湿沃土 | 10~100 | 10~20 |
一般土壤 | 5 | 16 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
王敬朋, 王金满, 张雅馥, 等. 探地雷达技术探测土壤特性的研究进展[J]. 土壤通报, 2021, 52(01):242-252.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
曹棋, 宋效东, 吴华勇, 等. 探地雷达地波法测定红壤区土壤水分的参数律定研究[J]. 土壤通报, 2020, 51(02):332-342.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
乔新涛, 曹毅, 毕如田. 基于AEA法的黄土高原矿区复垦农田土壤含水率特征研究[J]. 土壤通报, 2019, 50(1):63-69.
|
[21] |
|
[22] |
|
[23] |
吴志远, 彭苏萍, 杜文凤, 等. 基于探地雷达波振幅包络平均值确定土壤含水率[J]. 农业工程学报, 2015, 31(12):158-164.
|
[24] |
程琦, 张世文, 罗明, 等. 基于探地雷达粉煤灰充填复垦土壤含水率反演[J]. 地球物理学进展, 2021, 36(5):2159-2167.
|
[25] |
雷少刚, 卞正富. 探地雷达测定土壤含水率研究综述[J]. 土壤通报, 2008, 236(5):1179-1183.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
花东文, 韩霁昌, 张扬, 等. 基于探地雷达方法的新增耕地土层厚度估测-以南泥湾土地整治项目为例[J]. 土地开发工程研究, 2016, 1(1):31-36.
|
[37] |
彭亮, 徐清, 朱忠礼, 等. 应用低频微波波段GPR测量土壤结构[J]. 北京师范大学学报(自然科学版), 2007, 43(3):324-329.
|
[38] |
夏银行, 黎蕾, 邓少虹, 等. 基于探地雷达的喀斯特峰丛洼地土壤深度和分布探测[J]. 水土保持通报, 2016, 36(1):129-135.
|
[39] |
|
[40] |
|
[41] |
曹棋, 宋效东, 杨顺华, 等. 基于探地雷达的典型红壤区网纹红土层识别[J]. 土壤学报, 2019, 56(4):813-824.
|
[42] |
李俐, 付雪, 崔佳, 等. 基于包络检波和STFT谱分析的探地雷达土壤分层信息识别[J]. 地球信息科学学报, 2020, 22(2):316-327.
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
吴全, 姚喜军, 陈晓东, 等. 基于探地雷达的土体构型无损探测方法研究[J]. 干旱区地理, 2022, 45(6):1-13.
|
[48] |
许晨, 韦瑜. 基于小波变换和希尔伯特变换的N2红土层厚度识别方法研究-以西北地区崔木矿区为例[J]. 现代信息科技, 2022, 6(24):124-126+130.
|
[49] |
张先武, 高云泽, 方广有. 带有低通滤波的广义S变换在探地雷达层位识别中的应用[J]. 地球物理学报, 2013, 56(1):309-316.
|
[50] |
罗古拜, 曹银贵, 白中科, 等. 露天矿区排土场复垦地土壤容重差异、GPR特征识别与反演[J]. 农业资源与环境学报, 2019, 36(4):441-452.
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
谢潇, 刘智杰, 花东文, 等. 探地雷达在盐渍土地区盐磐层判断中的应用[J]. 西部大开发(土地开发工程研究), 2019, 4(4):8-12+26.
|
[59] |
薛建, 曾昭发, 田刚, 等. 探地雷达在吉林西部地区探测土壤碱化层[J]. 物探与化探, 2005, 28(5):421-424.
|
[60] |
邹杰, 张金珠, 王振华, 等. 利用探地雷达低频天线监测滴灌棉田盐渍化土壤盐分迁移研究[J]. 土壤通报, 2021, 52(4):836-844.
|
[61] |
陈星彤, 高荣久, 王宇亮, 等. 复垦土壤盐分污染的微波无损探测及定量分析[J]. 辽宁工程技术大学学报(自然科学版), 2008, 27(2):309-311.
|
[62] |
胡振琪, 陈星彤, 卢霞, 等. 复垦土壤盐分污染的微波频谱分析[J]. 农业工程学报, 2006, 22(6):56-60.
|
[63] |
|
[64] |
江红南. 探地雷达在干旱区盐渍化土壤层定量探测中的应用[J]. 物探与化探, 2014, 38(4):800-803.
|
[65] |
张金珠, 邹杰, 王振华, 等. 利用GPR多频天线振幅包络平均值法估算滴灌棉田土壤盐分含量[J]. 农业工程学报, 2021, 37(8):99-107.
|
[66] |
|
[67] |
谢国青, 陈紫秋. 探地雷达功率谱特征与土壤含水率相关关系分析[J]. 中国水运(下半月), 2022, 22(11):156-158.
|
[68] |
李蕙君, 钟若飞. 探地雷达波振幅与土壤含水量关系的数值模拟[J]. 应用科学学报, 2015, 33(1):41-49.
|
[69] |
宋文, 张敏, 吴克宁, 等. 潮土区农田土体构型层次的探地雷达无损探测试验[J]. 农业工程学报, 2018, 34(16):129-138.
|
[70] |
张松. 黄土层地质雷达电磁场正演模拟研究[D]. 山东: 中国石油大学, 2016:39-66.
|
[71] |
|
[72] |
|
[73] |
|
[74] |
张文瀚, 杜克明, 孙彦坤, 等. 基于探地雷达的田块尺度下不同深度土壤含水量监测[J]. 智慧农业(中英文), 2022, 4(1):84-96.
|
[75] |
|
[76] |
朱安宁, 吉丽青, 张佳宝, 等. 不同类型土壤介电常数与体积含水量经验关系研究[J]. 土壤学报, 2011, 48(2):263-268.
|
[77] |
巨兆强. 中国几种典型土壤介电常数及其与含水量的关系[D]. 北京: 中国农业大学, 2005:24-32.
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
胡庆荣. 含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2003:89-130.
|
[85] |
|
[86] |
董磊磊, 王维真, 吴月茹. 盐渍土介电特性及模型改进研究[J]. 遥感技术与应用, 2020, 35(4):786-796.
|
[87] |
邹杰, 张金珠, 王振华, 等. 膜下滴灌棉田Dobson介电模型参数修改及水盐含量反演[J]. 土壤, 2021, 53(6):1281-1289.
|
[88] |
|
[89] |
|
[90] |
赵学伟, 王萍, 李新举, 等. 基于BP神经网络GPR反演滨海盐渍土含盐量模型构建[J]. 山东农业科学, 2018, 50(5):152-155.
|
/
〈 |
|
〉 |