In order to understand the spatial variation in soil fertility of cultivated land in the Hangzhou region, and provide the basis for scientific fertilization, a comparison of differences in pH value, organic matter, total N, available P, available K and CEC of the soils was carried out among four landforms, including plain with water network, coastal plain, valley plain and hilly areas. The results showed that soil acidification in cultivated land in valley plain and hilly area was most obvious in the Hangzhou region. The contents of organic matter and total nitrogen and fertilizer retention capacity (CEC) were significantly lower than those of other areas. Besides the plain with water network, soil available K of the cultivated land was generally low. Soil available P in each of four agricultural landform areas varied greatly, and affected by fertilization. On the whole, fertility of cultivated soil in water net plain is the highest in the region. Some fertilization countermeasures for each of agricultural landform areas were put forward. It was important to increase input of organic fertilizers and improve basic fertility of the cultivated land in the coastal plain. Soil testing and fertilization was an important work in the plain with water network, and application rate of fertilizers should be determined according to the actual status of soil nutrient. Using limestone to decrease soil acidity and appropriately increase the dosage of potassium fertilizer should be available ways to modify soil quality of the cultivated land in valley plain and hilly areas.
倪中应,刘永红,, and
. Differences in soil fertility and fertilization countermeasure of cultivated land in different landforms of Hangzhou region[J]. Journal of Agriculture, 2015
, 5(6)
: 59
-64
.
DOI: 10.11924/j.issn.1000-6850.cjas14120019
[1]全国农业技术推广服务中心.耕地质量演变趋势研究[M].北京:中国农业科技出版社, 2008.
[2]章明奎.土壤地理学与土壤调查技术[M].北京:中国农业科学技术出版社,2012.
[3]陈海滨,陈志彪,陈志强.南方红壤侵蚀区地形对土壤有机质空间分布的影响--以长汀县河田地区为例[J].福建农业学报, 2010,25( 3) : 369-373.
[4]张兴昌,邵明安.水蚀条件下不同土壤氮素和有机质的流失规律[J].应用生态学报, 2000, 11 (2):231-234.
[5]王军,傅伯杰, 邱扬,等.黄土高原小流域土壤养分的空间异质性[J].生态学报, 2002, 22(8):1173- 1178.
[6]钟国辉,钟政昌,田发益,等.西藏米拉山区土壤主要养分元素垂直分布特征[J].山地学报,2007,25(1):108-113.
[7]王艳艳,赵伟明,赵科理,等.海拔高度对山核桃林地土壤pH值和有效养分的影响[J].现代农业科技,2012(17):224-225.
[8]单美,王训.我国耕地质量研究进展[J].泰山学院学报,2011,33(6):110-115.
[9]任笑媛.强化我国耕地质量建设的对策研究[J].安徽农学通报,2012,18(22):5-6.
[10]陈印军,王晋臣,肖碧林,等.我国耕地质量变化态势分析[J]. 中国农业资源与区划, 2011, 32(2):1 -5.
[11]孙波,潘贤章,王建德,等.我国不同区域农田养分平衡对土壤肥力时空演变的影响[J].地球科学进展, 2008, 23(11): 1201-1208.
[12]张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略[J]. 植物学通报,S2007,S24(6):S687-694.
[13]常介田,张翠翠,孟祥远,等. 麦秸直接还田对作物产量及培肥土壤效应分析[J].中国农学通报,2012,28(80:213-216.
[14]吴景贵,徐岩,王明辉,等.水稻土壤有机培肥后生物性状变化研究[J]. 中国农学通报,2005,21(12):241-247.
[15]戴学龙,蒋玉根,裘希雅,等.富阳市设施栽培草莓地土壤肥力的变化. 浙江农业科学, 2006, (5): 522-524, 525.
[16]王忠,沈建国,徐秋阳,等.杭州市余杭区农用土壤养分演变[J]. 浙江农业科学, 2011, (3): 694-695.
[17]何旭华,蒋玉根,许杰,等.富阳市30年来设施农业土壤养分的变化[J]. 浙江农业科学, 2012, (1): 104-107.
[18]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[19]黄昌勇,徐建明.土壤学[M].北京:中国农业出版社,2010.
[20]浙江省土壤普查办公室.浙江土壤[M].杭州:浙江科学技术出版社,1993.