2025 , Vol. 15 >Issue 5: 72 - 79
DOI: https://doi.org/10.11923/j.issn.2095-4050.cjas2024-0046
Development of Algae-derived Biostimulants and Its Application in Fertilizers
Received date: 2024-03-11
Revised date: 2024-08-15
Online published: 2025-05-19
Algae-derived biostimulants is widely distributed and environmentally friendly, which contains various mineral elements and organic active substances. It can not only be directly applied in crop cultivation, but also combined with fertilizer to produce seaweed fertilizer, which has broad market prospects. In order to improve the extraction efficiency of algal-derived biostimulants, accelerate the development of seaweed fertilizer production process, and promote the high-quality development of the seaweed fertilizer market, a review was conducted on the research progress related to the extraction and addition processes of algal-derived biostimulants. Firstly, the sources and active ingredients of algae-derived biostimulants were summarized. Secondly, the applications of algae-derived biostimulants in promoting plant growth, resisting stress and improving soil ecological environment were reviewed. The advantages and disadvantages of physical, chemical and biological extraction methods of algal derived biostimulants were introduced, and an efficient compound extraction process was proposed. Then, the application methods of algal-derived biostimulants in urea-based high tower compound fertilizer, nitro-based high tower compound fertilizer, water-soluble fertilizer and organic fertilizer were discussed. Finally, the development of the seaweed fertilizer industry was discussed and suggestions were put forward. At present, the seaweed fertilizer product market price is high, with poor production quality, and low market share. It is suggested to control the production cost of seaweed fertilizer through promoting technological innovation, optimize the seaweed fertilizer market environment through strengthening market supervision, and increase product promotion efforts through innovating technological services.
XIAO Chenxing , GAO Luyang , SHEN Yanhui , WU Liang , CHEN Hongkun . Development of Algae-derived Biostimulants and Its Application in Fertilizers[J]. Journal of Agriculture, 2025 , 15(5) : 72 -79 . DOI: 10.11923/j.issn.2095-4050.cjas2024-0046
表1 商业化海藻类产品原料来源生产企业 |
企业名称 | 品牌名称 | 海藻原料 | 用途 |
---|---|---|---|
Kelpak | Kelpak | 极大昆布 | 植物生长刺激素 |
PI Industry Ltd. | Biovita | 泡叶藻 | 藻源生物刺激素 |
The Espoma Company | Espoma | 泡叶藻 | 藻源生物刺激素 |
Maxicrop USA,Inc. | Maxicrop | 泡叶藻 | 藻源生物刺激素 |
新洋丰农业科技股份有限公司 | 百倍邦 | 马尾藻 | 海藻肥、土壤调理剂 |
北京雷力海洋生物新产业股份有限公司 | 海德丰 | 马尾藻 | 藻源生物刺激素 |
青岛海大生物集团股份有限公司 | 海状元 | 海带、浒苔 | 海藻肥 |
青岛明月海藻集团 | 蓝能量 | 泡叶藻 | 藻源生物刺激素、海藻肥 |
山东洁晶集团股份有限公司 | 藻施美 | 泡叶藻 | 藻源生物刺激素 |
青岛海鲸灵海藻生物集团有限公司 | 海鲸灵 | 泡叶藻 | 藻源生物刺激素 |
青岛蓝宝海洋生物科技有限公司 | BlueAlga | 泡叶藻 | 藻源生物刺激素 |
[1] |
|
[2] |
|
[3] |
陈芊如, 褚德朋,
|
[4] |
丁兰平, 黄冰心, 谢艳齐. 中国大型海藻的研究现状及其存在的问题[J]. 生物多样性, 2011(6):798-804.
|
[5] |
叶红. 马尾藻多糖的分离纯化、生物活性及结构分析[D]. 南京: 南京农业大学, 2008.
|
[6] |
邹平, 杨霞, 于喆妍, 等. 不同种类海藻多糖对盐胁迫下大豆幼苗的促进作用[J]. 大豆科学, 2024, 43(1):73-80.
|
[7] |
刘宏. 蜈蚣藻多糖对水稻种子抗盐作用研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2019.
|
[8] |
黄冰心, 韩丽君, 范晓. 海藻中的植物激素检测方法[J]. 海洋科学, 2001, 25(10):28-30.
|
[9] |
李铁松. 海带中两种植物激素的分离及其活性研究[D]. 大连: 大连理工大学, 2008.
|
[10] |
刘雪梅. 几种大型海藻中植物激素的研究分析[D]. 宁波: 宁波大学, 2012.
|
[11] |
易勇. 马尾藻源植物生长调节剂的检测、制备及应用研究[D]. 福州: 福建农林大学, 2016.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
尹媛红. 海藻功能物质对干旱胁迫下菜心生长及生理指标的影响[D]. 广州: 华南农业大学, 2018.
|
[16] |
|
[17] |
王超杰, 阎素君, 曾陇梅, 等. 南中国海海藻叶托马尾藻的化学成分研究[J]. 色谱, 1997, 15(5):38-41.
|
[18] |
卢启洪. 海藻孔石莼化学成分研究[D]. 杭州: 浙江大学, 2006.
|
[19] |
何小钊, 徐慧妮, 龙娟, 等. 植物甾醇在植物逆境胁迫中的研究进展[J]. 生命科学研究, 2013, 17(3):267-273.
|
[20] |
杨罗菲. 青岛沿海四株大型海藻代谢产物及其生物活性筛选的研究[D]. 青岛: 青岛理工大学, 2011.
|
[21] |
涂海华, 周坚, 毛宇, 等. 天然海藻肥对“夏黑”葡萄植株生长及果实品质的影响[J]. 中国土壤与肥料, 2019, 282(4):213-217.
|
[22] |
孙晓, 尹皓婵, 张占田, 等. 海藻提取物对水稻产量及养分利用的影响[J]. 江苏农业科学, 2020, 48(16):100-103.
|
[23] |
何锐, 谭星, 高美芳, 等. 添加不同浓度海藻肥对水培芥蓝生长及品质的影响[J]. 植物营养与肥料学报, 2020, 26(11):2051-2059.
|
[24] |
姜洁, 龚一富, 郭蓉, 等. 海藻生物肥对草莓产量和品质的影响[J]. 核农学报, 2019, 33(5):1032-1037.
|
[25] |
冯敬涛. 海藻提取物对干旱胁迫下苹果幼苗抗旱性和养分吸收的影响[D]. 泰安: 山东农业大学, 2019.
|
[26] |
陈迪文, 周文灵, 敖俊华, 等. 叶面喷施海藻提取物对甘蔗干旱胁迫的缓解效应[J]. 热带作物学报, 2021, 42(5):1348-1354.
|
[27] |
杨滟. 番茄植株耐盐性对海藻糖的响应机制[D]. 兰州: 甘肃农业大学, 2023:12.
|
[28] |
张广雨, 褚德朋, 刘元德, 等. 生物炭及海藻肥对烟草生长、土壤性状及青枯病发生的影响[J]. 中国烟草科学, 2019, 40(5):15-22.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
褚德朋, 陈芊如, 邰振益, 等. 大豆与海藻有机肥对烤烟生长和土壤细菌群落的影响[J]. 中国烟草学报, 2021, 27(6):43-51.
|
[33] |
耿银银, 尹媛红, 沈宏. 海藻功能物质的提取工艺、理化性质以及在农业领域中的应用[J]. 生态学杂志, 2017, 36(10):2951-2960.
|
[34] |
王智荣, 林宗毅, 崔春, 等. 酸法提取海带多糖的效果评价及工艺优化[J]. 中国食品添加剂, 2016, 144(2):126-131.
|
[35] |
翟为, 张美双, 张莉霞, 等. 复合酶法提取海带多糖工艺优化[J]. 食品科学, 2012, 33(18):6-9.
|
[36] |
冯尚善. 新型肥料产业现状分析与发展展望[J]. 磷肥与复肥, 2022, 37(7):9-11.
|
/
〈 |
|
〉 |