Novel porosity prediction method for tight sandstone reservoirs: a case study of member of He8, Ordos Basin, Northern China

Xi XIAO, ZhiHong WANG, YunFei YE, JianHua CHEN, Cong NIU, Peng ZHOU, Gang HAN, Di WANG, XinYe HOU

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1597-1606.

PDF(7054 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7054 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1597-1606. DOI: 10.6038/pg2024HH0010

Novel porosity prediction method for tight sandstone reservoirs: a case study of member of He8, Ordos Basin, Northern China

Author information +
History +

Abstract

The tight gas reserves of He8 member in Linxing area of Ordos Basin are large. However, the testing production of most wells in this member is low at the present stage. Recently, three wells have been tested, and the production yield after fracturing is more than 10000 m3/day, which reveals that the He8 member is of potential for development. According to the analysis of drilled wells, porosity is the key factor affecting productivity. Therefore, searching for high porosity reservoirs is of great significance for improving productivity of He8 Member. The rock physics analysis shows that Vp/Vs ratio in this area can distinguish sandstone from mudstone. According to the rock physics analysis result, this study predicts the distribution of sandstone in He8 member of Block A in Linxing area through pre-stack inversion. On the basis of pre-stack inversion result, the porosity prediction technology of tight sandstone reservoir is used to predict the porosity of thick reservoir by linear fitting for different reservoirs seperately for data in low P-impedance area. For the high impedance area, Bayesian discriminant analysis and co-simulation are used to predict the porosity of thin reservoirs. The porosity prediction results of thick reservoir and thin reservoir are combined to obtain the overall porosity prediction results of the reservoir. The results show that this method can effectively predict the porosity distribution of Class Ⅰ thick reservoirs and Class Ⅱ thick reservoirs, and simultaneously depict the porosity distribution of Class Ⅰ and Class Ⅱ thin reservoirs. By means of using different prediction method for different types of reservoirs, the description of reservoir porosity is more accurate, providing effective results for efficient development of tight sandstone reservoirs.

Cite this article

Download Citations
Xi XIAO , ZhiHong WANG , YunFei YE , et al . Novel porosity prediction method for tight sandstone reservoirs: a case study of member of He8, Ordos Basin, Northern China[J]. Progress in Geophysics. 2024, 39(4): 1597-1606 https://doi.org/10.6038/pg2024HH0010

References

An P , Cao D P , Zhao B Y . Reservoir physical parameters prediction based on LSTM recurrent neural network. Progress in Geophysics, 2019, 34(5): 1849 1858
Cao S H . Application of geostatistical inversion method in reservoir prediction of coal measure strata in Hangjinqi area. Petroleum Geology and Engineering, 2019, 33(5): 41-44
Chen Z G , Liu L S , Gao J . Application of cloud transform to prediction of H oilfield carbonate reservoirs in Middle East. Xinjiang Petroleum Geology, 2016a, 37(1): 107-111
Chen Z G , Liu L S , Liu Y Q . Thin-sandstone reservoir prediction in coal-bearing strata. Oil Geophysical Prospecting, 2016b, 51(S1): 52-57
Li G H , Zhao F , Yang P F . Quantitative description of fracture-cavity type carbonate reservoir equivalent porosity model in YM 2 well area, Tabei uplift. China Petroleum Exploration, 2011, 16(4): 20-22
Liu J , Cao J X , Ding W N . Research on reservoir porosity prediction method based on bidirectional longshort-term memory neural network. Progress in Geophysics, 2022, 37(5): 1993-2000
Tan X Y , Xie X N , Dong X P . Prediction of oil-bearing property for turbidite reservoir in Shinan-Haojia area, Dongying Sag. Geophysical Prospecting for Petroleum, 2015, 54(6): 762-769 762-769, 786
Wan X M , Wang L L , Liu J P . Porosity prediction of Mesozoic sandstone and mudstone with overlapped wave impedance: a case study of X block in North Yellow Sea basin. Xinjiang Petroleum Geology, 2015, 36(5): 545-549
Wang B , Niu C , Li Y . Application of frequency division inversion based on generalized S transform in oil and gas exploration in deep water area of South China Sea. Progress in Geophysics, 2019, 34(6): 2508-2514
Wang J , Cao J X , Zhou X . Reservoir porosity prediction based on deep bidirectional recurrent neural network. Progress in Geophysics, 2022, 37(1): 267-274
Xia Y J , Hu X Y , Wei S J . Applications of geophysics in shale gas exploration and exploitation. Progress in Geophysics, 2015, 30(4): 1798-1803
Yang Q L , Zhang J , Hao T . Seismic stepped prediction methods of sub-salt carbonate reservoirs in Pre-caspian Basin. Natural Gas Geoscience, 2014, 25(8): 1261-1266
Zhang Y , He G S , Li Y J . Neural network porosity prediction technology based on prestack inversion-take Nanchuan area as an example. Science Technology and Engineering, 2019, 19(25): 83-89
Zhou J X , Ma G K , Sui B . Application of reservoir parameters rock physics inversion in the prediction of "Sweet Spot": a case study in W17 oilfield. Progress in Geophysics, 2019, 34(3): 1159-1169
, 丹平 , 宝银 . 基于LSTM循环神经网络的储层物性参数预测方法研究. 地球物理学进展, 2019, 34(5): 1849-1858
绍贺 . 地质统计学反演方法在杭锦旗区块煤系地层储层预测中的应用. 石油地质与工程, 2019, 33(5): 41-44
志刚 , 雷颂 , . 云变换在中东地区H油田碳酸盐岩储集层预测中的应用. 新疆石油地质, 2016a, 37(1): 107-111
志刚 , 雷颂 , 雅琴 . 煤系地层中薄砂岩储层预测. 石油地球物理勘探, 2016b, 51(S1): 52-57
国会 , , 鹏飞 . 塔北隆起英买2区块缝洞型碳酸盐岩等效孔隙度模型定量描述研究. 中国石油勘探, 2011, 16(4): 20-22
, 俊兴 , 蔚楠 . 基于双向长短期记忆神经网络的储层孔隙度预测方法研究. 地球物理学进展, 2022, 37(5): 1993-2000
星宇 , 习农 , 孝璞 . 东营凹陷复杂岩性区浊积岩含油性预测方法研究——以史南-郝家地区为例. 石油物探, 2015, 54(6): 762-769 762-769, 786
晓明 , 嘹亮 , 金萍 . 中生界波阻抗叠置砂泥岩的孔隙度预测——以北黄海盆地X区块为例. 新疆石油地质, 2015, 36(5): 545-549
, , . 基于广义S变换的分频反演在南海深水区油气勘探中的应用. 地球物理学进展, 2019, 34(6): 2508-2514
, 俊兴 , . 基于深度双向循环神经网络的储层孔隙度预测. 地球物理学进展, 2022, 37(1): 267-274
一军 , 向阳 , 水健 . 页岩气勘探开发中地球物理技术的应用. 地球物理学进展, 2015, 30(4): 1798-1803
勤林 , , . 滨里海盆地盐下碳酸盐岩储层地震逐级预测方法. 天然气地球科学, 2014, 25(8): 1261-1266
, 贵松 , 彦婧 . 基于叠前反演的神经网络孔隙度预测技术——以南川地区为例. 科学技术与工程, 2019, 19(25): 83-88
家雄 , 光克 , . 储层参数岩石物理反演在"甜点"储层预测中应用研究——以W17油田为例. 地球物理学进展, 2019, 34(3): 1159-1169

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(7054 KB)

Accesses

Citation

Detail

Sections
Recommended

/