Research on two-dimensional reservoir grain size distribution prediction based on the fusion of automatic hyperparameter optimization framework and gradient boosting algorithm

XiMei JIANG, WeiChao YAN, HuiLin XING, JianMeng SUN

Prog Geophy ›› 2024, Vol. 39 ›› Issue (5) : 1886-1900.

PDF(9112 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9112 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (5) : 1886-1900. DOI: 10.6038/pg2024HH0199

Research on two-dimensional reservoir grain size distribution prediction based on the fusion of automatic hyperparameter optimization framework and gradient boosting algorithm

Author information +
History +

Abstract

Rock grain size plays a significant role in the analysis of hydraulic conditions and the identification of depositional environments. Traditional methods for grain size measurement, for instance sieve analysis and laser diffraction, are time-consuming, costly, and suffer from discontinuity in depth due to limited core recovery during drilling. Although the combination of well log curves and machine learning methods can compensate for the limitations of rock physics experimental techniques, existing studies mainly focus on one-dimensional characteristic values of grain size, lacking a comprehensive representation of the two-dimensional grain size distribution. In this study, we propose a machine learning approach that combines the automatic hyperparameter optimization framework (Optuna) with gradient boosting algorithms (LightGBM and XGBoost) to address the challenge of predicting two-dimensional grain size distribution in reservoirs. Based on well log data and grain size distribution experimental data from a certain block in the Chengdao oilfield, we compare eight different machine learning methods, including linear regression, Support Vector Regression (SVR), k-Nearest Neighbors (k-NN), random forest, Gradient Boosting Decision Tree (GBDT), XGBoost, LightGBM, and Convolutional Neural Network (CNN). By optimizing the machine learning parameters, we identify the most appropriate method for predicting reservoir grain size distribution. The research results demonstrate significant differences in the accuracy of grain size distribution prediction among the ten machine learning methods. When using nine well log parameters, including natural potential, sonic, wellbore diameter, compensated neutron, natural gamma, formation resistivity, deep lateral resistivity, micro lateral resistivity, and shallow lateral resistivity, as inputs, the proposed method achieves the highest accuracy in predicting the two-dimensional grain size distribution in reservoirs, with R2 coefficients approaching 0.7 and smaller errors. Furthermore, linear regression, SVR, as well as GBDT attain lower accuracy in predicting reservoir grain size distribution, which are not eligible for grain size prediction in reservoirs.

Key words

Grain size distribution / Machine learning / Optuna / XGBoost / LightGBM

Cite this article

Download Citations
XiMei JIANG , WeiChao YAN , HuiLin XING , et al. Research on two-dimensional reservoir grain size distribution prediction based on the fusion of automatic hyperparameter optimization framework and gradient boosting algorithm[J]. Progress in Geophysics. 2024, 39(5): 1886-1900 https://doi.org/10.6038/pg2024HH0199

References

Alizadeh N , Rahmati N , Najafi A . A novel approach by integrating the core derived FZI and well logging data into artificial neural network model for improved permeability prediction in a heterogeneous gas reservoir. Journal of Petroleum Science and Engineering, 2022, 241: 110573.
Ding S , Yang S F , Lu W . Robust prediction for water saturation based on strategy of light gradient boosting machine. Progress in Geophysics, 2023, 38(1 185-200.
Gu Y F , Zhang D Y , Bao Z D . Lithology prediction of tight sandstone reservoirs using GBDT. Progress in Geophysics, 2021, 36(5): 1956-1965.
Hou X M , Wang F Y , Zai Y . Prediction of carbonate porosity and permeability based on machine learning and logging data. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 644-653.
Huo F C , Chen Y , Ren W J . Prediction of reservoir key parameters in 'Sweet Spot' on the basis of particle swarm optimization to TCN-LSTM network. Journal of Petroleum Science and Engineering, 2022, 214: 110544.
Hussain W , Luo M , Ali M . Machine learning - a novel approach to predict the porosity curve using geophysical logs data: An example from the Lower Goru sand reservoir in the Southern Indus Basin, Pakistan. Journal of Applied Geophysics, 2023, 214: 105067.
Li C L , Cao X P , Zhang L F . Simulation and prediction of water-flooding reservoir relative permeability curve based on machine learning. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 138-142.
Li J , Qu S , Zhang H N . Log interpretation method of saline water-flooded layer in Chengdao Oilfield. Well Logging Technology, 2022, 46(3): 304-310.
Li J P , Zhang X Q , Li Y . Prediction of reservoir grain size in low permeability oilfield based on XGBoost. Computer Systems & Applications, 2022, 31(2): 241-245.
Li P , Fan Y T , Liu C H . Using neural network to predict vertical profile of grain size of reservoir sandstone. Fault-Block Oil & Gas Field, 2014, 21(4): 449-452.
Liu H , Xu Y , Luo Y Q . Permeability prediction of porous media using deep-learning method. Journal of Mechanical Engineering, 2022, 58(14): 328-336.
Liu S S , Wang Z M . Reservoir grain size profile prediction of multiple sampling points based on a machine learning method. Petroleum Science Bulletin, 2022, 7(1): 93-105.
Luo L , Zhu X W , Chang J . Logging recognition methods for clastic rocks with different granularities in blocks Su-5 and Tao-7. Natural Gas Industry, 2007, 27(12): 36-38.
Qin R B , Ye J P , Li L . Artificial-intelligence and machine-learning models of coalbed methane content based on geophysical logging data: A case study in Shizhuang South Block of Qinshui Basin, China. Geophysical Prospecting for Petroleum, 2023, 62(1): 68-79.
Shahriari B , Swersky K , Wang Z Y . Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 2016, 104(1): 148-175.
Shang F H , Lu Y Y , Cao M J . Well logging curve reconstruction method based on improved LSTM neural network. Computer Technology and Development, 2022, 32(6): 198-202.
Su Q , Zhu Y H , Jia Y L . Sedimentary environment analysis by grain-size data based on mini batch K-Means algorithm. Geofluids, 2018, 2018: 8519695.
Sun H , Zhou L , Fan D Y . Permeability prediction of considering organic matter distribution based on deep learning. Physics of Fluids, 2023, 35(3): 032014.
Wang L H , Lou Y S , Ma X Y . Research on neural network prediction model of reservoir particle size. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(1): 53-59.
Wang M , Guo X P , Tang H M . Prediction case of core parameters of shale gas reservoirs through deep Transformer transfer learning. Chinese Journal of Geophysics, 2023, 66(6): 2592-2610.
Wei Y S , Wei H S , Zhang J B . Application of predicting formation grain size using neural network in sand control design. Journal of Oil and Gas Technology, 2014, 36(5): 145-148.
Yang N , Wang G W , Lai J . Application of gamma curves wavelet transform to calculate grain size parameters. Geoscience, 2012, 26(4): 778-783.
Yu Z J , Sun Y Z , Zhang J H . Gated recurrent unit neural network (GRU) based on quantile regression (QR) predicts reservoir parameters through well logging data. Frontiers in Earth Science, 2023, 11: 1087385.
Zhang J C , Deng J G , Tan Q . Reconstruction of well logs based on XGBoost. Oil Geophysical Prospecting, 2022, 57(3): 697-705.
Zhang J R , Yang H F , Han J B . Application of probability cumulative grain size curves and lithofacies association to sedimentology. Natural Gas Technology and Economy, 2018, 12(4): 20-23 20-23, 55
Zhao J , Xiao C W , Wang M . Application of logging data to the sediment size-grading inversion. Earth Science, 2013, 38(4): 792-796.
, 尚锋 , . 基于高效梯度提升策略含水饱和度预测模型. 地球物理学进展, 2023, 38(1): 185-200.
宇峰 , 道勇 , 志东 . GBDT识别致密砂岩储层岩性. 地球物理学进展, 2021, 36(5): 1956-1965.
贤沐 , 付勇 , . 基于机器学习和测井数据的碳酸盐岩孔隙度与渗透率预测. 吉林大学学报(地球科学版), 2022, 52(2): 644-653.
春雷 , 小朋 , 林凤 . 基于机器学习算法的水驱储层相渗曲线仿真预测. 油气地质与采收率, 2022, 29(6): 138-142.
, , 海娜 . 埕岛油田盐水水淹层测井综合评价方法. 测井技术, 2022, 46(3): 304-310.
建平 , 小庆 , . 基于XGBoost的低渗油田储层粒度预测. 计算机系统应用, 2022, 31(2): 241-245.
, 永涛 , 常红 . 神经网络预测储层砂岩粒度纵向剖面. 断块油气田, 2014, 21(4): 449-452.
, , 杨泉 . 基于深度学习的多孔介质渗透率预测. 机械工程学报, 2022, 58(14): 328-336.
珊珊 , 志明 . 基于机器学习方法的多采样点储层粒度剖面预测. 石油科学通报, 2022, 7(1): 93-105.
, 心万 , . 苏5、桃7区块不同粒度碎屑岩测井识别方法. 天然气工业, 2007, 27(12): 36-38.
瑞宝 , 建平 , . 基于机器学习的煤层含气量测井评价方法——以沁水盆地柿庄南区块为例. 石油物探, 2023, 62(1): 68-79.
福华 , 玉莹 , 茂俊 . 基于改进LSTM神经网络的测井曲线重构方法. 计算机技术与发展, 2022, 32(6): 198-202.
利华 , 一珊 , 晓勇 . 储层粒度神经网络预测模型研究. 西南石油大学学报(自然科学版), 2016, 38(1): 53-59.
, 鑫平 , 洪明 . 深度Transformer迁移学习的页岩气储层核心参数预测案例. 地球物理学报, 2023, 66(6): 2592-2610.
裕森 , 红术 , 俊斌 . 神经网络预测储层粒度在防砂方案设计中的应用. 石油天然气学报, 2014, 36(5): 145-148.
, 贵文 , . 应用伽马测井曲线小波变换计算粒度参数. 现代地质, 2012, 26(4): 778-783.
家臣 , 金根 , . 基于XGBoost的测井曲线重构方法. 石油地球物理勘探, 2022, 57(3): 697-705.
婕茹 , 宏飞 , 建斌 . 粒度概率曲线特征及岩相组合分析在沉积环境研究中的应用. 天然气技术与经济, 2018, 12(4): 20-23 20-23, 55
, 承文 , . 测井资料在沉积物粒序反演中的应用. 地球科学——中国地质大学学报, 2013, 38(4): 792-796.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(9112 KB)

Accesses

Citation

Detail

Sections
Recommended

/