Summer precipitation verification and evaluation of AMSR2 precipitation product based on DPR data

Yang HUANG, YanSong BAO, Hui LUI, Jing LI, QiFeng LU, Fu WANG, Heng ZHANG

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1304-1314.

PDF(5719 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5719 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1304-1314. DOI: 10.6038/pg2024HH0265

Summer precipitation verification and evaluation of AMSR2 precipitation product based on DPR data

Author information +
History +

Abstract

Accurate precipitation data of satellite is very important for real-time precipitation monitoring and weather forecasting. This paper takes the Chinese mainland and its surrounding sea areas as the research area, and takes the DPR(Dual-frequency Precipitation Radar) precipitation data as the reference value to verify and evaluate the AMSR2(Advanced Microwave Scanning Radiometer 2) precipitation product from July to September 2022 by using classification statistical indicators and accuracy evaluation indicators. The results show that the AMSR2 precipitation product has the best observation effect over the ocean, with the probability of detection of 0.659 and ETS score of 0.546, and the correlation coefficient with DPR is 0.679, RMSE is 4.598 mm/h; The observation effect over the land is second, with the false alarm ratio of 0.277 and ETS score of 0.357, and the correlation coefficient with DPR is 0.325, RMSE is 2.793 mm/h; The observation effect over the coast is relatively poor, with the low probability of detection of 0.361 and ETS score of 0.307, and the correlation coefficient with DPR is 0.329, RMSE is 4.527 mm/h. At the same time, as the rainfall level increases, the estimation error of AMSR2 precipitation product for precipitation is also increasing. It is easy to overestimate precipitation in light rainfall level, and in moderate rainfall level it is easy to underestimate precipitation over the coast, to overestimate precipitation over the sea and land, while in heavy rainfall and heavy rainstorm level it is easy to underestimate precipitation, and the degree of underestimation increases with the increase of rainfall level.

Cite this article

Download Citations
Yang HUANG , YanSong BAO , Hui LUI , et al . Summer precipitation verification and evaluation of AMSR2 precipitation product based on DPR data[J]. Progress in Geophysics. 2024, 39(4): 1304-1314 https://doi.org/10.6038/pg2024HH0265

References

Aonashi K , Liu G S . Passive microwave precipitation retrievals using TMI during the Baiu Period of 1998. Part Ⅰ: algorithm description and validation. Journal of Applied Meteorology and Climatology, 2000, 39(12): 2024 2037
Chen H Q . Performance evaluation of the three multi-satellite gauge-adiusted precipitation products over China. Engineering of Surveying and Mapping, 2022, 31(3): 1-8 1-8, 15
Chen H Q , Lu D K , Zhou Z H . An overview of assessments on global precipitation measurement (GPM) precipitation products. Water Resources Protection, 2019, 35(1): 27-34
Deng X R , Wu Y . Analysis of horizontal precipitation structure of typhoon area based on GPM detection data. Progress in Geophysics, 2022, 37(5): 1799-1806
Hong Y , Gochis D , Cheng J T . Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. Journal of Hydrometeorology, 2007, 8(3): 469-482
Li H L , Sun L L , Yang L . Analysis on the characteristic of precipitation structure on the eastern slope of the Qinghai-Tibet Plateau based on TRMM PR data. Torrential Rain and Disasters, 2022, 41(4): 384-395
Liu C H , Lin J , Dai K . An evaluation method suitable for precipitation forecasts and services. Torrential Rain and Disasters, 2022, 41(6): 712-719
Liu J T , Xu Z X , Zhao H . Accuracy assessment for two satellite precipitation products: case studies in the Yarlung Zangbo River Basin. Plateau Meteorology, 2019, 38(2): 386-396
Lu M Q , Wei M . GPM data application in analysis of vertical structure of Typhoon 'Mujigae' precipitation. Remote Sensing Technology and Application, 2017, 32(5): 904-912
Michaelides S , Levizzani V , Anagnostou E . Precipitation: measurement, remote sensing, climatology and modeling. Atmospheric Research, 2009, 94(4): 512-533
Qian L , Shen F F , Xu D M . The impact of assimilating AMSR2 radiance data on the hurricane "Sandy" forecast. Marine Forecasts, 2019, 36(3): 9-17
Shi L J , Feng W Y , Lei Y . Accuracy evaluation of daily GPM precipitation product over China. Meteorological Monthly, 2022, 48(11): 1428-1438
Shu A Q , Xu D M , Shen F F . Different background fields and covariance schemes in AMSR2 radiance data assimilation and their impacts on the forecast and analysis of typhoon Son-tinh. Marine Forecasts, 2019, 36(5): 19-29
Xiao H Y , Han W , Bai Y H . Assimilation of GCOM-W AMSR2 radiance data in CMA_GFS 4DVar. Acta Meteorologica Sinica, 2022, 80(5): 777-790
Xie T , Zhao L . Advances in sea ice concentration retrieval based on satellite remote sensing. Advances in Marine Science, 2022, 40(3): 351-366
Yang Z L , Kou L L , Jiang Y F . Comparative study between GPM dual-frequency precipitation radar and C-band radar. Modern Radar, 2020, 42(8): 19-24
You Y L , Munchak S J , Peters-Lidard C . Daily rainfall estimate by emissivity temporal variation from 10 satellites. Journal of Hydrometeorology, 2021, 22(3): 623-637
You Y L , Petkovic V , Tan J . Evaluation of V05 precipitation estimates from GPM constellation radiometers using KuPR as the reference. Journal of Hydrometeorology, 2020, 21(4): 705-728
Yu Z W , Liu J W , Huang J P . Effect of assimilating AMSR2 microwave imager data on WRF model rainstorm forecast. Meteorological Disaster Prevention, 2017, 24(3): 10-14 10-14, 29
Zhong Y L . Evaluation and verification of quantitative precipitation estimation product. Journal of Agricultural Catastrophology, 2021, 11(3): 96-98
汉清 , 鹿 德凯 , 泽慧 . GPM降水产品评估研究综述. 水资源保护, 2019, 35(1): 27-34
汉清 . 三种多卫星降水产品在中国大陆地区的性能评估. 测绘工程, 2022, 31(3): 1-8 1-8, 15
欣柔 , . 基于GPM探测资料的台风降水水平结构分析. 地球物理学进展, 2022, 37(5): 1799-1806
函璐 , 礼璐 , . 基于TRMM PR探测资料的青藏高原东坡降水结构特征分析. 暴雨灾害, 2022, 41(4): 384-395
凑华 , , . 一种适用于评估降水预报服务能力的评分方法. 暴雨灾害, 2022, 41(6): 712-719
江涛 , 宗学 , . 不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例. 高原气象, 2019, 38(2): 386-396
美圻 , . GPM资料在分析"彩虹"台风降水垂直结构中的应用. 遥感技术与应用, 2017, 32(5): 904-912
, 菲菲 , 冬梅 . AMSR2微波成像资料同化对飓风"桑迪"预报的影响研究. 海洋预报, 2019, 36(3): 9-17
丽娟 , 婉悦 , . GPM日降水产品在中国大陆的准确性评估. 气象, 2022, 48(11): 1428-1438
艾青 , 冬梅 , 菲菲 . 不同控制变量的AMSR2资料同化方法对台风"山神"预报的影响研究. 海洋预报, 2019, 36(5): 19-29
弘毅 , , 一泓 . GCOM-W AMSR2资料在CMA_GFS四维变分中的同化应用. 气象学报, 2022, 80(5): 777-790
, . 海冰密集度卫星遥感反演研究进展. 海洋科学进展, 2022, 40(3): 351-366
紫蕾 , 蕾蕾 , 银丰 . GPM双频测雨雷达与C波段雷达资料对比研究. 现代雷达, 2020, 42(8): 19-24
兆文 , 健文 , 江平 . 同化AMSR2微波成像资料对WRF模式暴雨预报的影响. 气象灾害防御, 2017, 24(3): 10-14 10-14, 29
宇璐 . 风云四号卫星定量降水估计产品的检验评估. 农业灾害研究, 2021, 11(3): 96-98

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(5719 KB)

Accesses

Citation

Detail

Sections
Recommended

/