Research on the application of high resolution 3D seismic reflection exploration in offshore engineering

Kai LI

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1670-1686.

PDF(16452 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(16452 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1670-1686. DOI: 10.6038/pg2024HH0278

Research on the application of high resolution 3D seismic reflection exploration in offshore engineering

Author information +
History +

Abstract

Cross-sea bridges and tunnels play a significant role in alleviating transportation bottlenecks. Accurate and comprehensive geological survey data is essential for selecting and optimizing cross-sea transportation engineering plans, designing improvements, and formulating construction plans. It also serves as a vital safeguard for engineering risk decision-making. However, traditional survey methods face limitations in underwater tunnel projects due to the complex marine traffic environment, aquatic conditions, and variable topography and geology. This study, based on the Jintang Subsea Tunnel survey project for the Ningbo-Zhoushan Railway, introduces three-dimensional seismic exploration technology into the field of engineering surveys, exploring new approaches to surveying underwater tunnels under complex geological conditions. The application of three-dimensional seismic reflection in the Jintang Subsea Tunnel survey project solves the challenges associated with data collection in shallow water areas through a collection scheme that includes single-cable, parallel, and multi-line closely spaced acquisitions. Advanced processing techniques, such as tidal correction based on high-precision measurement data, multiple wavelet suppression techniques using pre-stack predictive deconvolution and post-stack wavefield extrapolation, and well-constrained depth conversion techniques, significantly improve the vertical and lateral resolution of three-dimensional seismic exploration in water areas and enhance the accuracy of survey results. This approach successfully addresses the spatial distribution of the seabed, Quaternary strata, and underlying bedrock (submarine mountains) in complex geological sections, as well as the range of structural features and fractured zones. Furthermore, the well-constrained geological modeling technique based on three-dimensional seismic reflection results accurately simulates the spatial contact relationships between formations and structures. By integrating engineering models, it enables a visual analysis of the geological conditions along the tunnel, effectively improving the quality of survey results and achieving high-precision three-dimensional geological exploration. The application study of the Jintang Subsea Tunnel survey project demonstrates the feasibility of high-precision three-dimensional seismic reflection exploration technology in water areas. It provides accurate and reliable geological survey results for water-based engineering geological surveys, design optimization, and engineering risk decision-making, offering a fresh perspective for complex engineering geological surveys in water areas and showing excellent practicality and potential for broader adoption.

Cite this article

Download Citations
Kai LI. Research on the application of high resolution 3D seismic reflection exploration in offshore engineering[J]. Progress in Geophysics. 2024, 39(4): 1670-1686 https://doi.org/10.6038/pg2024HH0278

References

Brown A R . Seismic attributes and their classification. The Leading Edge, 1996, 15(10): 1090
Cao S , Luo H Y , Zeng F . Application of subbottom profiler in engneering for waterway in near-shore sea. Coastal Engineering, 2010, 29(2): 70 75
Chen H , Wang Z , Zhang Y B . Analysis and application of tidal correction methods of marine seismic data. Journal of Oil and Gas Technology, 2011, 33(1): 90-93
Chen Q , Sidney S . Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 1997, 16(5): 445-448
Chen Z H , Zhu S X , Li Q . Study of interval velocity calculating and its application based on improved Dix formulas. Science Technology and Engineering, 2012, 12(30): 7840-7843 7840-7843, 7848
Deng G L , Ding L X , Li F Y . The processing technology of narrow azimuth Quasi three-dimensional seismic data acquisition by single source and single long streamer system in marine seismic exploration. Geophysical and Geochemical Exploration, 2019, 43(4): 828-834
Deng Y J , Li J , Zhang J F . Cable-based seismic data acquisition in offshore shoal area. China Petroleum Exploration, 2015, 20(6): 60-65
Ding W F , Li J B , Gao J Y . Definition of seismic geometry for short non-position receivers and multiples attenuation in shallow water. Chinese Journal of Geophysics, 2017, 60(9): 3685-3692
Dix C H . Seismic velocities from surface measurements. Geophysics, 1955, 20(1): 68-86
Duan W H , Zhou J Y , Zhang B T . Application of high density 3D seismic acquisition in Weizhou oilfield. Offshore Oil, 2018, 38(1): 17-21 17-21, 27
Fan W H , Yang C C , Sun C W . Application of prestack time migration for three dimensional seismic data. Progress in Geophysics, 2007, 22(3): 836-842
Gao S L , Xu F . OBC pseud wide line acquisition method for Paleozoic in shallow sea area. Progress in Geophysics, 2014, 29(5): 2382-2387
Guo H J , Liu Q C . The discussion of earthquake attribute technology's history, present situation and development tendency. Geophysical and Geochemical Exploration, 2008, 32(1): 19-22
Guo J B , Xia Z A , Feng J M . Application of multiple coverage seismic reflection wave method in Qiongzhou Strait cross-sea engineering. Railway Standard Design, 2014, 58(S1): 30-33
He H Y . Case study of offshore high resolution seismology. Chinese Journal of Geophysics, 1999, 42(1): 120-126
He H Y . . High-Resolution Seismic Technology and its Application in Offshore Areas Beijing Geological Publishing House 2001
Li G D , Feng H H , Huang M Y . Positioning technique of multi-streamer in marine seismic exploration. Oil Geophysical Prospecting, 2009, 44(4): 393-398
Li J F , Li W J , Meng Q M . The application of high resolution single channel marine seism to the explorationof offshore quaternary superficial deposits in Hong Kong waters. Geophysical and Geochemical Exploration, 2007, 31(1): 90-94
Li P , Liu Y K , Chang X . Progress on the multiple problems. Progress in Geophysics, 2006, 21(3): 888-897
Li X , Yin C , Ge Z J . Situation and prospects of offshore seismic survey geometry. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(5): 67-80
Lin C X . The application of high precison marine seismic reflection method to exploration in Xiamen marine area. Chinese Journal of Engineering Geophysics, 2016, 13(1): 52-59
Lin X X . The application of marine seismic reflection to the geotechnical engineering investigation. Chinese Journal of Engineering Geophysics, 2015, 12(2): 240-245
Liu J D , Huang Y L , Song W R . Application of Chirp acoustic subbottom profile system on geologic investigation in water areas. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(2): 216-221
Lu J M , Wang Y G . . Principle of Seismic Exploration Dongying Petroleum University Press 2009
Luo W Z , Wei C L , Wang L M . Selection and validation of the main acquisition parameters in marine seismic exploration: a case on landslope deep water area in northern South China Sea. Journal of Tropical Oceanography, 2009, 28(4): 93-101
Ma Y G , Chen S S , Diao H D . Application of Edgetech 3200XS shallow profiling system in dredging engineering investigation. Geotechnical Investigation & Surveying, 2006 S1): 304-309
Niu B H , Shen C , Huang X W . Progress in multiple attenuation techniques based on wave equation. Progress in Geophysics, 2002, 17(3): 480-485
Pan J , Luan X W , Sun Y B . The application of SRME in high resolution seismic exploration of shallow sea environment. Progress in Geophysics, 2015, 30(1): 429-434
Pei Y L , Wang K Y , Yan K P . Study of deep-sea high-resolution multi-channel seismic exploring system. Advances in Marine Science, 2010b, 28(2): 244-249
Pei Y L , Zhao Y X , Liu B H . The offshore high-resolution multi-channel seismicstreamer and its application to the ocean engineering. Progress in Geophysics, 2010a, 25(1): 331-336
Peng H L , Ren T , He J W . Application of shallow water de-multiple methods based on water-layer model. Progress in Geophysics, 2016, 31(4): 1646-1654
Shi Y , Liu H , Zou Z . Surface-related multiples prediction based on wave equation and adaptive subtraction investigation. Chinese Journal of Geophysics, 2010, 53(7): 1716-1724
Shi Y H , Zheng Z C . Engineering geological investigation methods of cross-sea tunnel: A case study of engineering geological investigation of Qiongzhou Strait cross-sea. South China Sea Geology Research, 2008 1): 108-113
Song J W , Verschuur D J , Chen X H . Research status and progress in multiple elimination. Progress in Geophysics, 2014, 29(1): 240-247
Sun W B , Zhu Z Y , Zhang J M . Tidal corrections for marine time-lapse seismic. Oil Geophysical Prospecting, 2016, 51(6): 1084-1088
Sun Y C , Li Y F , Sun S L . Research on key technologies and new method of high precision 3D geological modeling. Coal Science and Technology, 2019, 47(9): 241-248
Wang D , Wang H Z , Ma Z T . Review of prestack time migration methods. Progress in Exploration Geophysics, 2004, 27(5): 313-320
Wang E J , Pan G S , Hu Q H . Comparison between single and multi-channel seismic method in offshore engineering exploration. Chinese Journal of Engineering Geophysics, 2016, 13(4): 502-507
Wang K Y , Xu Q Y , Zhang G F . Summary of seismic attribute analysis. Progress in Geophysics, 2013, 28(2): 815-823
Wang S L , Liu C P . Over-water geophysical scheme study of some Yangtze River bridges. Chinese Journal of Engineering Geophysics, 2016, 13(4): 546-552
Wang W , Cao G , Zhao G X . Fine geological modeling of Pinghu oilfield. Progress in Geophysics, 2013, 28(6): 3142-3147
Wang Y G , Meng X J , Xia J Z . Development and practice in reservoir geophysics. Progress in Geophysics, 2015, 30(5): 2246-2256
Wen P F , Liu B , Xu Y X . Novel seismic exploration technique targeting fine characterization of marine gas hydrates: seismic exploration with a harrow-like acquisition geometry. Progress in Geophysics, 2021, 36(5): 2215-2221
Xiao E L , Chen Y , Wan H . Surface-related multiple elimination on marine seismic data. Progress in Geophysics, 2010, 25(3): 1057-1064
Xu H N , Shu H , Li L Q . 3-D seismic data processing techniques for gas hydrate by the single-source and single-cable acquisition method. Progress in Geophysics, 2009, 24(5): 1801-1806
Yang J J , Tian C F . The application of seismic imaging method to Zhuankou Yangtze Bridge. Chinese Journal of Engineering Geophysics, 2013, 10(3): 301-305
Yang W D , Liu W J . Marine high-resolution seismic techniques applying in the geological exploration of shallow strata. Offshore Oil, 2007, 27(2): 18-25
Yang Z D , Liu J P , Liu Z . Application of seismic imaging method in the exploration of a river-cross tunnel. Chinese Journal of Engineering Geophysics, 2007, 4(6): 601-605
Yao G . Application of high precision marine seismic streamer acquisition system to Laoshan uplift of South Yellow Sea. Marine Geology & Quaternary Geology, 2018, 38(3): 152-161
Ye Y . Study on method of 3-D constraint Dix inverted interval velocity and application. Oil Geophysical Prospecting, 2008, 43(4): 443-446
Yilmaz O . Applications of engineering seismology in urban areas. The Leading Edge, 2013, 32(3): 264-274
Yilmaz Ö , Özyalvac M , Duman F . Offshore high-resolution seismic survey for a subsea tunnel across the Bosphorus Waterway, Istanbul, Turkey. The Leading Edge, 2018, 37(10): 732-738
Zhang G L , Hao C T , Yao C . Summary of multiples attenuation approaches in marine seismic data processing. Progress in Geophysics, 2016, 31(6): 2777-2787
Zhang X D , Wen P F , Xu Y X . Key technology research on processing three-dimensional seismic data of natural gas hydrates acquired by dual-source single-cable method. Geological Review, 2015, 61(S1): 202-203
Zhang Y , Tian S F , Wang J H . Application of small group interval high-resolution multi-channel seismic system surveys to shallow marine engineering. Ocean Technology, 2008a, 27(4): 75-77 75-77, 114
Zhang Y , Tian S F , Zhou J P . Small scale high resolution multichannel seismic system surveys off Daishan Island. Journal of Marine Sciences, 2008b, 26(4): 105-110
Zhang Y L , Yang C C , Jia S G . The application of the seismic attributes. Progress in Geophysics, 2005, 20(4): 1129-1133
Zhang Z B , Wang Z , Dong S L . Integrated navigation and positioning data processing in offshore multi-sources and multi-streamers seismic survey. Geophysical Prospecting for Petroleum, 2013, 52(6): 630-635
Zhang Z H , Long W , Li X W . The application of seismic reflection method to the exploration of bridge location and tunnel location in water area of Pearl River estuary. Geophysical and Geochemical Exploration, 2013, 37(4): 749-755
Zhou D S , Zeng X J , Yang C . Technical analysis of the P-Cable high resolution 3d marine acquisition system. Journal of Ocean Technology, 2022, 41(2): 51-60
Zhu J J , Li S Z . Progress of application of P-Cable system of 3-D high-resolution seismic. Marine Geology & Quaternary Geology, 2017, 37(4): 221-228
Zhu L F , Luo M X , Quan H Y . Device configuration for 3D seismic acquisition with Undershooting mode. Quipment for Geophysical Prospecting, 2012, 22(3): 152-156
Zhuang Z Y , Jiang H , Yi S C . The application of tide correction based on tide forecasts. Chinese Journal of Engineering Geophysics, 2013, 10(3): 286-290
, 红雨 , . 浅地层剖面仪在近海航道工程中的应用. 海岸工程, 2010, 29(2): 70-75
, , 亚斌 . 海上地震资料潮汐校正技术的分析及应用. 石油天然气学报, 2011, 33(1): 90-93
志宏 , 四新 , . 基于改进Dix公式层速度求取方法应用研究. 科学技术与工程, 2012, 12(30): 7840-7843 7840-7843, 7848
桂林 , 龙翔 , 福元 . 海洋长排列单源单缆准三维窄方位地震资料处理技术. 物探与化探, 2019, 43(4): 828-834
元军 , , 建峰 . 浅滩拖缆地震采集方式研究. 中国石油勘探, 2015, 20(6): 60-65
维凤 , 家彪 , 金耀 . 浅水无定位拖缆观测系统定义及多次波压制效果分析. 地球物理学报, 2017, 60(9): 3685-3692
文豪 , 静毅 , 百涛 . 高密度三维地震采集在涠洲油田的应用. 海洋石油, 2018, 38(1): 17-21 17-21, 27
卫花 , 长春 , 传文 . 三维地震资料叠前时间偏移应用研究. 地球物理学进展, 2007, 22(3): 836-842
顺莉 , . 浅海区古生界海底电缆拟宽线地震采集方法. 地球物理学进展, 2014, 29(5): 2382-2387
华军 , 庆成 . 地震属性技术的历史、现状及发展趋势. 物探与化探, 2008, 32(1): 19-22
建波 , 支埃 , 建铭 . 多次覆盖地震反射波法在琼州海峡跨海工程中的应用. 铁道标准设计, 2014, 58(S1): 30-33
汉漪 . 海上高分辨率地震实例研究. 地球物理学报, 1999, 42(1): 120-126
汉漪 . . 海上高分辨率地震技术及其应用 北京 地质出版社 2001
国栋 , 海泓 , 敏燕 . 海上地震勘探多缆定位技术研究. 石油地球物理勘探, 2009, 44(4): 393-398
军峰 , 文杰 , 庆敏 . 高分辨率单道海上地震在香港海域沉积结构勘查中的应用. 物探与化探, 2007, 31(1): 90-94
, 伊克 , . 多次波问题的研究进展. 地球物理学进展, 2006, 21(3): 888-897
, , 子建 . 海上地震采集观测系统研究现状与展望. 西南石油大学学报(自然科学版), 2014, 36(5): 67-80
朝旭 . 高精度水域地震反射波法在厦门海域工程勘察中的应用. 工程地球物理学报, 2016, 13(1): 52-59
孝城 . 水域地震反射波法在岩土工程勘察中的应用. 工程地球物理学报, 2015, 12(2): 240-245
建达 , 永林 , 文荣 . Chirp浅剖仪在水域地质调查中的应用. 防灾减灾工程学报, 2010, 30(2): 216-221
基孟 , 永刚 . . 地震勘探原理 东营 石油大学出版社 2009
文造 , 成龙 , 立明 . 海上地震勘探主要采集参数的选取与验证——以南海北部某调查区为例. 热带海洋学报, 2009, 28(4): 93-101
永刚 , 尚士 , 海岛 . Edgetech 3200XS浅剖系统在疏浚工程勘察中的应用. 工程勘察, 2006 S1): 304-309
滨华 , , 新武 . 波动方程多次波压制技术的进展. 地球物理学进展, 2002, 17(3): 480-485
, 锡武 , 运宝 . SRME技术在海洋浅水高分辨率地震勘探中的应用. 地球物理学进展, 2015, 30(1): 429-434
彦良 , 月霞 , 保华 . 近海高分辨率多道地震拖缆系统及其在海洋工程中的应用. 地球物理学进展, 2010a, 25(1): 331-336
彦良 , 揆洋 , 克平 . 深水浅地层高分辨率多道地震探测系统研究. 海洋科学进展, 2010b, 28(2): 244-249
海龙 , , 建伟 . 基于水层建模理论的浅水多次波压制方法研究与应用. 地球物理学进展, 2016, 31(4): 1646-1654
, , . 基于波动方程表面多次波预测与自适应相减方法研究. 地球物理学报, 2010, 53(7): 1716-1724
要红 , 志昌 . 跨海通道工程的工程地质调查方法——以琼州海峡跨海工程地质调查为例. 南海地质研究, 2008 1): 108-113
家文 , Verschuur D J , 小宏 . 多次波压制的研究现状与进展. 地球物理学进展, 2014, 29(1): 240-247
文博 , 振宇 , 金淼 . 海上时移地震中潮汐校正应用研究. 石油地球物理勘探, 2016, 51(6): 1084-1088
月成 , 永飞 , 守亮 . 高精度三维地质建模新方法与关键技术研究. 煤炭科学技术, 2019, 47(9): 241-248
尔觉 , 广山 , 庆辉 . 近海工程勘察中单道与多道地震方法对比研究. 工程地球物理学报, 2016, 13(4): 502-507
开燕 , 清彦 , 桂芳 . 地震属性分析技术综述. 地球物理学进展, 2013, 28(2): 815-823
双六 , 长平 . 拟建长江大桥桥址区水上物探方案研究. 工程地球物理学报, 2016, 13(4): 546-552
, , 国欣 . 平湖油气田精细地质建模方法. 地球物理学进展, 2013, 28(6): 3142-3147
延光 , 宪军 , 吉庄 . 油藏地球物理技术发展与应用实践. 地球物理学进展, 2015, 30(5): 2246-2256
, 华忠 , 在田 . 叠前时间偏移方法综述. 勘探地球物理进展, 2004, 27(5): 313-320
鹏飞 , , 云霞 . 面向海域水合物精细刻画的地震勘探技术——耙缆式地震勘探. 地球物理学进展, 2021, 36(5): 2215-2221
二莲 , , . SRME多次波衰减方法在海洋地震资料中的应用. 地球物理学进展, 2010, 25(3): 1057-1064
华宁 , , 丽青 . 单源单缆方式采集的天然气水合物三维地震数据处理技术. 地球物理学进展, 2009, 24(5): 1801-1806
俊杰 , 成富 . 地震映像法在沌口长江公路大桥勘察中的应用. 工程地球物理学报, 2013, 10(3): 301-305
文达 , 望军 . 海洋高分辨率地震技术在浅部地质勘探中的运用. 海洋石油, 2007, 27(2): 18-25
占东 , 江平 , . 地震映像法在长江某过江隧道勘察中的应用. 工程地球物理学报, 2007, 4(6): 601-605
. 高精度电缆采集系统在南黄海崂山隆起油气调查中的应用. 海洋地质与第四纪地质, 2018, 38(3): 152-161
. 三维约束Dix反演层速度方法及其应用研究. 石油地球物理勘探, 2008, 43(4): 443-446
广利 , 重涛 , . 海洋地震资料多次波衰减方法综述. 地球物理学进展, 2016, 31(6): 2777-2787
旭东 , 鹏飞 , 云霞 . 双源单缆方式采集的天然气水合物三维地震数据处理关键技术研究. 地质论评, 2015, 61(S1): 202-203
, 双凤 , 建华 . 浅海工程中小道距高分辨率多道地震方法的应用. 海洋技术, 2008a, 27(4): 75-77 75-77, 114
, 双凤 , 建平 . 小排列高分辨多道地震系统在岱山岛大桥工程中的应用. 海洋学研究, 2008b, 26(4): 105-110
延玲 , 长春 , 曙光 . 地震属性技术的研究和应用. 地球物理学进展, 2005, 20(4): 1129-1133
振波 , , 水利 . 海上多源多缆地震采集综合导航定位数据处理技术. 石油物探, 2013, 52(6): 630-635
哲辉 , , 学文 . 反射波法在珠江口海域桥址及隧道勘察的应用. 物探与化探, 2013, 37(4): 749-755
大森 , 宪军 , . P-Cable高分辨率三维地震采集系统的技术分析. 海洋技术学报, 2022, 41(2): 51-60
俊江 , 三忠 . 高分辨率三维海洋反射地震P-cable系统应用进展. 海洋地质与第四纪地质, 2017, 37(4): 221-228
连峰 , 敏学 , 海燕 . 拖缆三维地震双船作业的设备配置实例. 物探装备, 2012, 22(3): 152-156
祖垠 , , 淑昌 . 基于潮位预测的潮汐校正技术的应用. 工程地球物理学报, 2013, 10(3): 286-290

在野外生产中得到了甬舟铁路建设指挥部的大力支持,审稿专家提出了建设性意见,对论文起到了极大的促进作用,在此一并表示感谢.

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(16452 KB)

Accesses

Citation

Detail

Sections
Recommended

/