Evaluation of observation data quality of Fujian earthquake early warning network

XiuZhen YOU, BinHua LIN, Jun LI, YongXiang WEI, ShiCheng WANG, ShuiLong LI, BingHuo DING

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1330-1342.

PDF(8166 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8166 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1330-1342. DOI: 10.6038/pg2024HH0282

Evaluation of observation data quality of Fujian earthquake early warning network

Author information +
History +

Abstract

In response to the data quality assessment issues faced by the integration of seismometer, strong motion seismograph, and intensity meters, research and analysis work on background noise of regional early warning networks has been carried out. Using the noise power spectrum method, maximum probability acceleration noise peak (PGA), velocity noise peak (PGV), and displacement noise peak (PGD) standards, scientifically evaluate the background noise of the three types of sensors that make up the network, and analyze the differences in their noise levels; Quantitatively evaluate the noise level of stations using the noise power spectral area ratio method, and display the noise level of each station based on different color codes, making it convenient to visually judge the operation status of the station; Based on actual statistics, select appropriate proportions to determine the high and low baseline of various sensor noise models and the upper and lower limits of normal noise PGA, PGV, and PGD, and identify stations with suspected abnormal waveform records. The research results indicate that among the three types of seismic monitoring instruments, seismometers can fully and effectively record environmental noise in the full frequency band, with the lowest noise level; The strong seismic instrument can record environmental noise above 0.1 Hz, and the frequency band below 0.1 Hz is mainly due to instrument self noise, with a higher noise level than the seismometer; The recording of the intensity meter is basically the self noise of the instrument, which cannot record the Earth's pulsation and has the highest noise level. The noise power spectral area ratio method divides the noise level into four levels, which can effectively select stations with high-quality records. Detecting abnormal stations through frequency and time domains greatly improves the reliability of detection results, while also facilitating the detection of false alarms such as calibration and abnormal large pulses.The quality evaluation results of the observation data of the network can be used as a reference for maintenance personnel to focus on high-quality stations, ensure the Completeness of the data of high-quality stations, and record abnormal stations that should be repaired in a timely manner, providing an important guarantee for the reliability and accuracy of earthquake early warning and intensity quick report products.

Cite this article

Download Citations
XiuZhen YOU , BinHua LIN , Jun LI , et al . Evaluation of observation data quality of Fujian earthquake early warning network[J]. Progress in Geophysics. 2024, 39(4): 1330-1342 https://doi.org/10.6038/pg2024HH0282

References

Allen R M , Melgar D . Earthquake early warning: advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 2019, 47 361-388
Gao F , Yang X S , Ma S L . Summary of earthquake early warning system. Journal of Natural Disasters, 2014, 23(5): 62 69
Ge H K , Chen H C , Ouyang B . Transportable seismometer response to seismic noise in vault. Chinese Journal of Geophysics, 2013, 56(3): 857-868
Guo K , Wen R Z , Yang D K . Effectiveness evaluation and social benefits analyses on earthquake early warning system. Acta Seismologica Sinica, 2016, 38(1): 146-154
Lin B H , Jin X , Huang L Z . Quantitative assessment of background noise levels of seismic stations and their application in air-gun source detection. China Earthquake Engineering Journal, 2020, 42(6): 1555-1564
Lin B H , Jin X , Li J . Station network ambient noise level evaluation and its influence on air gun source excitation effect. Acta Seismologica Sinica, 2017, 39(3): 330-342
Liu X Z , Shen X Z , Zhang Y S . Comparison on different seismometers performance based on probability density functions. Acta Seismologica Sinica, 2018, 40(4): 461-470
McNamara D E , Buland R P . Ambient noise levels in the continental United States. Bull. Seismol. Soc. Am., 2004, 94(4): 1517-1527
Song J D , Zhu J B , Wei Y X . Backtracking verification of machine learning earthquake early warning magnitude estimation and on-site threshold alarm for Menyuan M6.9 earthquake in Qinghai on January 8, 2022. Chinese Journal of Geophysics, 2023, 66(7): 2903-2919
Tian Y , Qu C , Wang W T . Characteristics of the ambient noise distribution recorded by the dense seismic array in the Yanyuan Basin, Sichuan Province. Chinese Journal of Geophysics, 2020, 63(6): 2248-2261
Wang F , Wang W T , Long J F . Seismic noise characteristics of broad-band seismic networks in Chinese mainland. Acta Seismologica Sinica, 2019, 41(5): 569-584
Wu J P , Ouyang B , Wang W L . Ambient noise level of North China from temporary seismic array. Acta Seismologica Sinica, 2012, 34(6): 818-829
Xu W W . Research progress on seismic data quality control. Progress in Geophysics, 2018, 33(3): 998-1004
You X Z , Lin B H , Li J . Evaluation of early warning capability of Fujian province seismic network. Acta Seismologica Sinica, 2023, 45(1): 126-141
Zhao L L , Yin X X , Yin Z W . Research on monitoring capacity and early warning time assessment of Gansu early warning network. Progress in Geophysics, 2021, 36(4): 1487-1492
, 学山 , 树林 . 地震预警系统综述. 自然灾害学报, 2014, 23(5): 62-69
洪魁 , 海潮 , 阳飚 . 流动地震观测背景噪声的台基响应. 地球物理学报, 2013, 56(3): 857-868
, 瑞智 , 大克 . 地震预警系统的效能评估和社会效益分析. 地震学报, 2016, 38(1): 146-154
彬华 , , . 台网噪声评估及其对气枪震源激发效果影响的研究. 地震学报, 2017, 39(3): 330-342
彬华 , , 玲珠 . 地震台站噪声水平定量评估及其在气枪源探测中的应用. 地震工程学报, 2020, 42(6): 1555-1564
旭宙 , 旭章 , 元生 . 基于噪声概率密度函数的地震计观测性能对比. 地震学报, 2018, 40(4): 461-470
晋东 , 景宝 , 永祥 . 2022年1月8日青海门源6.9级地震机器学习地震预警震级估计与现地阈值报警的回溯验证. 地球物理学报, 2023, 66(7): 2903-2919
, , 伟涛 . 四川盐源盆地短周期密集台阵背景噪声分布特征分析. 地球物理学报, 2020, 63(6): 2248-2261
, 伟涛 , 剑锋 . 中国大陆地区宽频带地震台网台基噪声特征. 地震学报, 2019, 41(5): 569-584
建平 , 阳飚 , 未来 . 华北地区地震环境噪声特征研究. 地震学报, 2012, 34(5): 818-829
卫卫 . 地震观测数据质量控制研究综述. 地球物理学进展, 2018, 33(3): 998-1004
秀珍 , 彬华 , . 福建省地震台网预警能力评估. 地震学报, 2023, 45(1): 126-141
林林 , 欣欣 , 志文 . 甘肃预警台网监测能力以及预警时间评估研究. 地球物理学进展, 2021, 36(4): 1487-1492

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(8166 KB)

Accesses

Citation

Detail

Sections
Recommended

/