Fault recognition using 3D convolutional neural network with global information extraction

LongLong QIAN, BinPeng YAN

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1532-1543.

PDF(6907 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(6907 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1532-1543. DOI: 10.6038/pg2024HH0319

Fault recognition using 3D convolutional neural network with global information extraction

Author information +
History +

Abstract

Accurate fault identification is crucial to oil and gas exploration and development. Traditional fault identification technology based on coherence volume attribute has poor effects in complex structural zones. Conventional convolutional neural network based on image segmentation is also difficult to make up for the feature information lost in down sampling. Therefore, building a global information extraction attention mechanism can not only introduce information extraction in the concatenation part of the U-Net full convolutional network structure, compensates for the lack of information in the downsampling process and enhances the network's learning ability. It can also enhance the bottom level feature information and improve interpretation accuracy by using information scaling at the bottom level of the network. Moreover, this attention block does not add additional parameter information and has a low memory requirement. The experimental results show that the test accuracy of the neural network model with attention mechanism reaches 96%, and the loss function converges to 7%. The description of the main fault of the actual seismic data is better than the conventional U-Net. The attention mechanism of global information extraction provides a new idea for 3D fault intelligent recognition based on convolutional neural network.

Cite this article

Download Citations
LongLong QIAN , BinPeng YAN. Fault recognition using 3D convolutional neural network with global information extraction[J]. Progress in Geophysics. 2024, 39(4): 1532-1543 https://doi.org/10.6038/pg2024HH0319

References

Bahorich M , Farmer S . 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge, 1995, 14(10): 1053 1058
Chen Y R , Zhang J H , Lin C Y . The method and application of minor strike-slip faults identification about deep and ultra-deep carbonate reservoir based on wavelet transform sensitive frequency. Progress in Geophysics, 2021, 36(5): 1941-1947
Duan C J , Ai J X , Ye Z L . The Application of wavelet transform coherency algorithm in seismic data interpretation. Progress in Geophysics, 2013, 28(1): 434-438
Duan C J , Wu H N , Ma C J . The Application of higher-order statistics coherency algorithm in seismic datainterpretation. Progress in Geophysics, 2009, 24(2): 640-643
Gersztenkorn A , Marfurt K J . Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics, 1999, 64(5): 1468-1479
Guo M H , Xu T X , Liu J J . Attention mechanisms in computer vision: A survey. Computational Visual Media, 2022, 8(3): 331-368
He T , Liu N H , Wu B Y . ResU-Net based three-dimensional fault identification method and application. Chinese Journal of Engineering Mathematics, 2023, 40(1): 1-19
He Y L , Wen X T , Wang J T . Fault recognition based on 3D U-Net++L3 convolutional neural network. Progress in Geophysics, 2022, 37(2): 607-616
Hu J , Shen L , Albanie S . Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023
Kuang L C , Liu H , Ren Y L . Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development, 2021, 48(1): 1-11
Li S Z , Liu N H , Li F Y . Automatic fault delineation in 3-D seismic images with deep learning: Data augmentation or ensemble learning?. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60 5911214
Li T T , Hou S Y , Ma S Z . Overview and research progress of fault identification method. Progress in Geophysics, 2018, 33(4): 1507-1514
Liu C , Zhu Z Y , Zhang Q . 3rd coherence analysis technique and an application based on the anti-large-dip. Progress in Geophysics, 2015, 30(5): 2193-2199
Liu G X , Ma Z H . Fault identification of post stack seismic data by improved Unet network. Chinese Journal of Computational Physics, 2023, 40(6): 742-751
Liu Z J , He X L , Zhang Z H . Low-order fault identification technique based on 3D U-NET full Convolutional Neural Network (CNN). Progress in Geophysics, 2021, 36(6): 2519-2530
Lu F M , Meng R G , Zhang J H . Research of complex fault recognition method based on UNet++ network and transfer learning technique. Progress in Geophysics, 2022, 37(3): 1100-1111
Lu P F , Du W L , Li L . Intelligent recognition method of low-grade faults based on VNet deep learning architecture. Oil Geophysical Prospecting, 2022, 57(6): 1276-1286
Marfurt K J , Kirlin R L , Farmer S L . 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63(4): 1150-1165
Wang X K , Gao J H , Chen W C . An efficient implementation of eigenstructure-based coherence algorithm using recursion strategies and the power method. Journal of Applied Geophysics, 2012, 82 11-18
Wang X W , Yang K Q , Zhou L H . Methods of calculating coherence cube on the basis of wavelet transform. Chinese Journal of Geophysics, 2002, 45(6): 847-852
Wu W H , Yang Y , Wu B Y . MTL-FaultNet: Seismic data reconstruction assisted multitask deep learning 3-D fault interpretation. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61 5914815
Wu X M , Liang L M , Shi Y Z . FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 2019, 84(3): IM35-IM45
Yang T T , Wang B , F L . The application of seismic coherence technology for petroleum exploration. Progress in Geophysics, 2013, 28(3): 1531-1540
Zhang B , Pu Y T , Xu Z H . Exploring factors affecting the performance of deep learning in seismic fault attribute computation. Interpretation, 2022, 10(4): T619-T636
Zhou D H , Li H , Yan J G . Iterative optimization of label data in CNN algorithm and its application to small fault identification. Progress in Geophysics, 2022, 37(1): 338-347
永芮 , 军华 , 承焰 . 一种基于小波优势频带的深层-超深层碳酸盐岩走滑断裂识别方法及应用. 地球物理学进展, 2021, 36(5): 1941-1947
春节 , 敬旭 , 增炉 . 基于小波变换的相干技术在断层解释中的应用. 地球物理学进展, 2013, 28(1): 434-438
春节 , 汉宁 , 承杰 . 基于高阶统计量的相干体算法在地震中深层构造解释中应用. 地球物理学进展, 2009, 24(2): 640-643
, 乃豪 , 帮玉 . 基于ResU-Net的三维断层识别方法及应用. 工程数学学报, 2023, 40(1): 1-19
易龙 , 晓涛 , 锦涛 . 基于3D U-Net++L3卷积神经网络的断层识别. 地球物理学进展, 2022, 37(2): 607-616
立春 , , 义丽 . 人工智能在石油勘探开发领域的应用现状与发展趋势. 石油勘探与开发, 2021, 48(1): 1-11
婷婷 , 思宇 , 世忠 . 断层识别方法综述及研究进展. 地球物理学进展, 2018, 33(4): 1507-1514
, 振宇 , . 基于抗大倾角干扰的第三代相干体分析技术及应用. 地球物理学进展, 2015, 30(5): 2193-2199
贵鑫 , 中华 . 改进Unet网络对叠后地震数据的断层识别. 计算物理, 2023, 40(6): 742-751
宗杰 , 锡雷 , 祖豪 . 基于3D U-Net全卷积神经网络的低序级断层识别技术. 地球物理学进展, 2021, 36(6): 2519-2530
凤明 , 瑞刚 , 军华 . UNet++和迁移学习相结合的复杂断裂识别方法研究. 地球物理学进展, 2022, 37(3): 1100-1111
鹏飞 , 文龙 , . 基于VNet深度学习架构的低序级断层智能识别方法. 石油地球物理勘探, 2022, 57(6): 1276-1286
西文 , 孔庆 , 立宏 . 基于小波变换的地震相干体算法研究. 地球物理学报, 2002, 45(6): 847-852
涛涛 , , 福亮 . 相干技术在油气勘探中的应用. 地球物理学进展, 2013, 28(3): 1531-1540
东红 , , 建国 . CNN标签数据迭代优化及在小断层识别中的应用. 地球物理学进展, 2022, 37(1): 338-347

感谢伍新明教授在开源软件上做的贡献,感谢审稿专家提出的修改意见和编辑部的大力支持.

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(6907 KB)

Accesses

Citation

Detail

Sections
Recommended

/