Comparative study of C-response based on toroidal current source modelling.

DaoLin YANG, XiangYun HU, Qi HAN

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1415-1426.

PDF(7130 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7130 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1415-1426. DOI: 10.6038/pg2024HH0337

Comparative study of C-response based on toroidal current source modelling.

Author information +
History +

Abstract

Because magnetospheric and ionospheric current source modelling is a prior step of global mantle conductivity imaging,we research on the current source modelling method and compare the C-responses excited by different sources. The study deduces a toroidal current source from time-varying geomagnetic fields with the IGRF-13 model and Green's function. Then we calculate the C-responses using the integral function method and verify the method on a layered Earth model. In quasi-dipole coordinate system,we compute the C-responses on the surface of the "1D+thin sheet" Earth model separately inspired by the toroidal current and its Y10 degree component,namely Ctoro and CY10 values,and compare them with the real values on the geomagnetic observatories. The outcome shows that ocean effect causes more disturbance on the real part of C1d than its imaginary part and the source is mainly composed of its first-order part. At the GZH,QZH,and SSH observatories along the coastline,real part of Ctoro is closer to Creal in around the period of 1~30 days,and real part of CY10 is nearer in around the period of 30~100 days. Therefore,the local current may have a deep effect on the C-responses,its characteristics change with frequencies and it's influence may be evaluated carefully before GDS inversion.

Cite this article

Download Citations
DaoLin YANG , XiangYun HU , Qi HAN. Comparative study of C-response based on toroidal current source modelling.[J]. Progress in Geophysics. 2024, 39(4): 1415-1426 https://doi.org/10.6038/pg2024HH0337

References

Emmert J T , Richmond A D , Drob D P . A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08322
Everett M E , Constable S , Constable C G . Effects of near-surface conductance on global satellite induction responses. Geophysical Journal International, 2003, 153(1): 277 286
Han Q , Hu X Y , Peng R H . Spherical magnetotelluric modeling based on non-uniform source. Chinese Journal of Geophysics, 2020, 63(8): 3154-3166
Kelbert A , Schultz A , Egbert G . Global electromagnetic induction constraints on transition-zone water content variations. Nature, 2009, 460(7258): 1003-1006
Kuvshinov A V . 3-D global induction in the oceans and solid earth: Recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric and oceanic origin. Surveys in Geophysics, 2008, 29(2): 139-186
Kuvshinov A , Grayver A , Tøffner-Clausen L . Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach. Earth, Planets and Space, 2021, 73(1): 67
Kuvshinov A , Semenov A . Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses-I. An approach and its verification. Geophysical Journal International, 2012, 189(3): 1335-1352
Laundal K M , Finlay C C , Olsen N . Solar wind and seasonal influence on ionospheric currents from swarm and CHAMP measurements. Journal of Geophysical Research: Space Physics, 2018, 123(5): 4402-4429
Lentz W J . Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics, 1976, 15(3): 668-671
Li J P , Weng A H , Li S W . The influence of ocean effect on geomagnetic observations in coastal areas of China: A case study of the Guangzhou observatory. Chinese Journal of Geophysics, 2018, 61(2): 649-658
Li S W , Li Y B , Zhang Y H . Remnant of the late Permian superplume that generated the Siberian Traps inferred from geomagnetic data. Nature Communications, 2023, 14(1): 1311
Morse P M , Feshbash H . Methods of Theoretical Physics, Part II. New York: McGraw-Hill, 1953
Olsen N . The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophysical Journal International, 1998, 133(2): 298-308
Schultz A , Larsen J C . On the electrical conductivity of the mid-mantle-I. Calculation of equivalent scalar magnetotelluric response functions. Geophysical Journal International, 1987, 88(3): 733-761
Semenov A , Kuvshinov A . Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses-II. Data analysis and results. Geophysical Journal International, 2012, 191(3): 965-992
Singer B S . Electromagnetic integral equation approach based on contraction operator and solution optimization in Krylov subspace. Geophysical Journal International, 2008, 175(3): 857-884
Sun J , Egbert G D . A thin-sheet model for global electromagnetic induction. Geophysical Journal International, 2012a, 189(1): 343-356
Sun J , Egbert G D . Spherical decomposition of electromagnetic fields generated by quasi-static currents. GEM-International Journal on Geomathematics, 2012b, 3(2): 279-295
Sun J , Kelbert A , Egbert G D . Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data. Journal of Geophysical Research: Solid Earth, 2015, 120(10): 6771-6796
Swarztrauber P N , Spotz W F . Generalized discrete spherical harmonic transforms. Journal of Computational Physics, 2000, 159(2): 213-230
Wang H , Yao Y S , Xu T T . Estimation of local impedance for long period magnetotelluric data using geomagnetic data and interstation transfer functions. Progress in Geophysics, 2019, 34(1): 200-207
Xu W Y . Data organization in geomagnetism and space physics and relevant coordinate systems. Progress in Geophysics, 2006, 21(4): 1043-1060
Yang Y Y , Hulot G , Vigneron P . The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite. Earth, Planets and Space, 2021, 73(1): 45
Yao H B , Ren Z Y , Tang J T . 3D finite-element modeling of Earth induced electromagnetic field and its potential applications for geomagnetic satellites. Sci. China Earth Sci., 2021, 64(10): 1798-1812
Yao H B , Ren Z Y , Tang J T . A multi-resolution finite-element approach for global electromagnetic induction modeling with application to southeast China coastal geomagnetic observatory studies. Journal of Geophysical Research: Solid Earth, 2022, 127(8): e2022JB024659
Zhang H Q , Egbert G D , Huang Q H . A relatively dry mantle transition zone revealed by geomagnetic diurnal variations. Science Advances, 2022, 8(31): eabo3293
, 祥云 , 荣华 . 基于非均一场源的球坐标大地电磁模拟方法. 地球物理学报, 2020, 63(8): 3154-3166
建平 , 爱华 , 世文 . 海洋效应对中国沿海地磁观测影响-以广州台站为例. 地球物理学报, 2018, 61(2): 649-658
, 郁松 , 滔滔 . 利用地磁台站数据和站间传递函数估算长周期大地电磁测深的本地阻抗. 地球物理学进展, 2019, 34(1): 200-207
文耀 . 地磁与空间物理资料的组织和相关坐标系. 地球物理学进展, 2006, 21(4): 1043-1060
鸿波 , 政勇 , 井田 . 高精度感应地磁场正演模拟计算及其潜在应用分析. 中国科学: 地球科学, 2021, 51(10): 1796-1812

感谢俄勒冈州立大学的Jin Sun博士提供的地球模型积分方程正演代码,感谢北京大学的张慧茜博士与中南大学的姚鸿波博士论文中提供的地表电导与地层一维电性结构模型,以及Alan D. Chave提供的BIRRP数据处理程序.地磁台站数据由开源的python软件包magpysv整理.

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(7130 KB)

Accesses

Citation

Detail

Sections
Recommended

/