Bayesian inversion: an important method and challenge for seismic source parameter inversion research

Zhe WANG, YunHua LIU

Prog Geophy ›› 2024, Vol. 39 ›› Issue (5) : 1771-1787.

PDF(3065 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3065 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (5) : 1771-1787. DOI: 10.6038/pg2024HH0340

Bayesian inversion: an important method and challenge for seismic source parameter inversion research

Author information +
History +

Abstract

The role of geophysical inversion in seismic research and prediction is of paramount importance. This paper seeks to comprehensively outline the constraints associated with conventional inversion techniques, focusing on the introduction of a Bayesian-based uncertainty inversion method. Bayesian inversion involves computing posterior distributions utilizing diverse prior distributions and likelihood functions, with special emphasis on established techniques like the Markov Chain Monte Carlo (MCMC) and variational inference methods, thereby augmenting the reliability of inversion outcomes.The manuscript furnishes an elaborate exposition on pivotal techniques within Bayesian inversion, notably delving into regularization methods (such as Laplace and von Karman regularization) that confine the parameter space in seismic inversion, validated through rigorous case studies. Moreover, it expounds on sampling methodologies (including the Metropolis-Hastings algorithm and Gibbs sampling) that facilitate parameter space sampling and approximate posterior distributions. The application of the Metropolis-Hastings algorithm in seismic inversion is meticulously elucidated.The discussion accentuates the criticality of model parameter selection, notably the influence of uncertainty associated with fault geometric shape selection on inversion results. Additionally, it probes into the challenges encountered in constructing finite fault source models and presents a Bayesian-based case study evaluating the credibility of different slip model clusters.In conclusion, the paper summarizes the limitations inherent in the Bayesian approach and delineates potential avenues for future research directions. In the realm of geophysical inversion, the application of Bayesian methods presents novel prospects for overcoming the constraints of traditional methodologies.

Key words

Bayesian methods / Geophysical inversion / Regularization methods / Sampling methods / Model parameters / Model evaluation

Cite this article

Download Citations
Zhe WANG , YunHua LIU. Bayesian inversion: an important method and challenge for seismic source parameter inversion research[J]. Progress in Geophysics. 2024, 39(5): 1771-1787 https://doi.org/10.6038/pg2024HH0340

References

Ainscoe E A , Elliott J R , Copley A . Blind thrusting, surface folding, and the development of geological structure in the MW6.3 2015 Pishan (China) earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122(11 9359 9382.
Alemie W , Sacchi M D . High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution. Geophysics, 2011, 76(3): R43-R55.
Amey R M J , Hooper A , Walters R J . A Bayesian method for incorporating self-similarity into earthquake slip inversions. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 6052-6071.
Ammon C J , Ji C , Thio H K . Rupture process of the 2004 Sumatra-Andaman earthquake. Science, 2005, 308(5725): 1133-1139.
Anderson K R , Poland M P . Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012. Earth and Planetary Science Letters, 2016, 447: 161-171.
árnadóttir T , Hreinsdóttir S , Gudmundsson G . Crustal deformation measured by GPS in the South Iceland Seismic Zone due to two large earthquakes in June 2000. Geophysical Research Letters, 2001, 28(21): 4031-4033
Avseth P , Mukerji T , Jørstad A . Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system. Geophysics, 2001, 66(4): 1157-1176.
Bagnardi M , Hooper A . Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.
Barrientos S E , Ward S N . The 1960 Chile earthquake: inversion for slip distribution from surface deformation. Geophysical Journal International, 1990, 103(3): 589-598.
Blei D M , Kucukelbir A , Mcauliffe J D . Variational inference: A review for statisticians. Journal of the American Statistical Association, 2017, 112(518): 859-877.
Bodin T , Sambridge M , Gallagher K . A self-parametrizing partition model approach to tomographic inverse problems. Inverse Problems, 2009, 25(5): 055009.
Chen X , Zhou L , Yu P . Bayesian joint inversion of magnetotelluric and seismic data based on simulated annealing method. Journal of East China University of Technology (Natural Science), 2016, 39(1): 59-66
Chunduru R K , Sen M K , Stoffa P L . Hybrid optimization methods for geophysical inversion. Geophysics, 1997, 62(4): 1196-1207.
Cotton F , Campillo M . Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 1995, 100(B3): 3961-3975.
Dai Q W , Chen W , Zhang B . Improved particle swarm optimization and its application to full-waveform inversion of GPR. Geophysical and Geochemical Exploration, 2019, 43(1): 90-99
de Figueiredo L P , Grana D , Roisenberg M . Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion. Geophysics, 2019, 84(5): M1-M13.
Deutsch C V , Journel A G . Geostatistical software library and user's guide. New York, 1992, 119(147): 578
Dorugade A V . New ridge parameters for ridge regression. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2014, 15: 94-99
Doucet A , Godsill S , Andrieu C . On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197-208.
Feng J , Meng X H , Chen Z X . Review of the gravity density interface inversion. Progress in Geophysics, 2014, 29(1): 223-228.
Feng W P , Li Z H . A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data. Progress in Geophysics, 2010, 25(4): 1189-1196.
Fialko Y . Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 MW7.3 Landers earthquake. Journal of Geophysical Research: Solid Earth, 2004, 109(B8): B08401.
Freymueller J , King N E , Segall P . The co-seismic slip distribution of the Landers earthquake. Bulletin of the Seismological Society of America, 1994, 84(3): 646-659.
Fukuda J , Johnson K M . A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bulletin of the Seismological Society of America, 2008, 98(3): 1128-1146.
Gallagher K , Charvin K , Nielsen S . Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Marine and Petroleum Geology, 2009, 26(4): 525-535.
Gombert B , Duputel Z , Jolivet R . Revisiting the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault damage. Geophysical Journal International, 2018, 212(2): 839-852.
Gouveia W P , Scales J A . Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis. Journal of Geophysical Research: Solid Earth, 1998, 103(B2): 2759-2779.
Guitton A , Symes W W . Robust inversion of seismic data using the Huber norm. Geophysics, 2003, 68(4): 1310-1319.
Han Y P , Luo S M , Chen F C . Effect of model error and result of regional vertical crustal movement. Journal of Geodesy and Geodynamics, 2015, 35(1): 21-25
Hansen T M , Journel A G , Tarantola A . Linear inverse Gaussian theory and geostatistics. Geophysics, 2006, 71(6): R101-R111.
Hastings W K . Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97-109.
Heimann S , Vasyura-Bathke H , Sudhaus H . A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems. Solid Earth, 2019, 10(6): 1921-1935.
Hu G W , Niu Y , Yang S L . New genetic algorithm for MSA solution problem. Journal of Lanzhou University of Technology, 2005, 31(3): 91-93.
Hudnut K W , Bock Y , Cline M . Co-seismic displacements of the 1992 Landers earthquake sequence. Bulletin of the Seismological society of America, 1994, 84(3): 625-645.
Jiang X D , Zhang W , Yang H . The research on Bayesian inference for geophysical inversion. Reviews of Geophysics and Planetary Physics, 2022, 53(2): 159-171
Kirkpatrick S , Gelatt C D Jr , Vecchi M P . Optimization by simulated annealing. Science, 1983, 220(4598): 671-680.
Li Z C , Zhang P , Jin S G . Wenchuan earthquake deformation fault inversion and analysis based on GPS observations. Acta Geodaetica et Cartographica Sinica, 2009, 38(2): 108-113 108-113, 119
Liang Y , Zhu G B , Liu H T . Regularization of the earth gravity field determination using satellite gravity gradiometry data. Progress in Geophysics, 2019, 34(4): 1323-1327.
Liu J M , Gao M T , Chen K . On the correlation of ground motion parameters with slope stability incorporating topographic effects. Acta Seismologica Sinica, 2015, 37(5): 865-874
Lu Y X , Peng S P , Du W F . Rayleigh wave inversion using heat-bath simulated annealing algorithm. Journal of Applied Geophysics, 2016, 134: 267-280.
Luo T , Feng X , Guo Z Q . Seismic inversion of anisotropy parameters of fractured reservoirs by simulated annealing and particle swarm optimization. Journal of Jilin University (Earth Science Edition), 2019, 49(5): 1466-1476
Mai P M , Schorlemmer D , Page M . The earthquake-source inversion validation (SIV) project. Seismological Research Letters, 2016, 87(3): 690-708.
Malinverno A , Briggs V A . Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics, 2004, 69(4): 1005-1016.
Michalos G , Karvouniari A , Dimitropoulos N . Workplace analysis and design using virtual reality techniques. CIRP Annals, 2018, 67(1): 141-144.
Minson S E , Simons M , Beck J L . Bayesian inversion for finite fault earthquake source models Ⅰ—theory and algorithm. Geophysical Journal International, 2013, 194(3): 1701-1726.
Monelli D , Mai P M , Jónsson S . Bayesian imaging of the 2000 Western Tottori (Japan) earthquake through fitting of strong motion and GPS data. Geophysical Journal International, 2009, 176(1): 135-150.
Mosegaard K , Tarantola A . Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12431-12447.
Murray M H , Savage J C , Lisowski M . Coseismic displacements: 1992 Landers, California, earthquake. Geophysical Research Letters, 1993, 20(7): 623-626.
Pei Z L , Mou Y G . Numerical simulation of seismic wave propagation. Progress in Geophysics, 2004, 19(4): 933-941.
Peng J H . Sum maximum likelihood estimate: a new estimate rule. Journal of Guilin College of Geology, 1994, 14(4): 436-444
Ragon T , Sladen A , Simons M . Accounting for uncertain fault geometry in earthquake source inversions-Ⅰ: theory and simplified application. Geophysical Journal International, 2018, 214(2): 1174-1190.
Rothman D H . Automatic estimation of large residual statics corrections. Geophysics, 1986, 51(2): 332-346.
Shi X M , Wang J Y . Lecture on non-linear inverse methods in geophysics (4) - Genetic algorithm method. Chinese Journal of Engineering Geophysics, 2008, 5(2): 129-140.
Theune U , Jensås I Ø , Eidsvik J . Analysis of prior models for a blocky inversion of seismic AVA data. Geophysics, 2010, 75(3): C25-C35.
Vasyura-Bathke H , Dettmer J , Steinberg A . The Bayesian earthquake analysis tool. Seismological Research Letters, 2020, 91(2A): 1003-1018.
Vasyura-Bathke H , Dettmer J , Dutta R . Accounting for theory errors with empirical Bayesian noise models in nonlinear centroid moment tensor estimation. Geophysical Journal International, 2021, 225(2): 1412-1431.
Visser G , Guo P , Saygin E . Bayesian transdimensional seismic full-waveform inversion with a dipping layer parameterization. Geophysics, 2019, 84(6): R845-R858.
Wang F , Chen S C . A new strategy of solving non-linear inverse problem. Geophysical Prospecting for Petroleum, 1999, 38(3): 76-85
Wang L Y . Research on theory and application of total least squares in geodetic inversion. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 629
Wang W P , Wang Q L . Dislocation parameters of Gonghe earthquake jointly inferred by genetic algorithm and least square method. Acta Seismologica Sinica, 1999, 21(3): 285-290.
Wang X Q , Ding X , Wang L . A study on fast earthquake loss assessment and its application to 2008 Wenchuan M8 earthquake. Acta Seismologica Acta, 2009, 31(2): 205-211
Wang Z W , Fu L Y , Han T C . Review of thermoelasticity theory in rocks and its applications in geophysics. Reviews of Geophysics and Planetary Physics, 2021, 52(6): 623-633
Wen Y M , Xu C J , Liu Y . Source parameters of 2008 Qinghai Dachaidan MW6.3 earthquake from InSAR inversion and automated fault discretization method. Geomatics and Information Science of Wuhan University, 2012, 37(4): 458-462
Williams P M . Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143.
Wright T J , Lu Z , Wicks C . Source model for the MW6.7, 23 October 2002, Nenana mountain earthquake (Alaska) from InSAR. Geophysical Research Letters, 2003, 30(18): 1974.
Wu J C , Chen Y Q . Inversion of model parameters by considering prior information: Determination of the dislocation model parameters of Lancang-Gengma earthquakes. Crustal Deformation and Earthquake, 1997, 17(2): 27-32
Xie S L , Sun Y J . The co-seismic and post-seismic deformation and stress of Wenchuan earthquake in 2008 and their influence on the Songpinggou Geohazards. Acta Geoscientica Sinica, 2021, 42(5): 691-700
Xu C J , Wen Y M . Nonhomogeneity of the crust from MS7.9 Manyi(Tibet) earthquake with InSAR observation. Geomatics and Information Science of Wuhan University, 2008, 33(8): 846-849
Xu X H , Tong X P , Sandwell D T . Refining the shallow slip deficit. Geophysical Journal International, 2016, 204(3): 1867-1886
Xue Q F . Wave equation based joint inversion of microseismic source location, source excitation time and anisotropic parameters of the VTI media. Earthquake Research in China, 2021, 37(2): 285-299
Yan B T , Yin H T , Feng B . Source parameters and slip distribution of the Luding MS6.8 earthquake in 2022 constrained by InSAR data. Journal of Geodesy and Geodynamics, 2023, 43(3): 221-225
Yang G Y , Luan X W , Meng F S . Seismic data reconstruction based on Shearlet transform and total generalized variation regularization. Chinese Journal of Geophysics, 2020, 63(9): 3465-3477.
Yang J H , Liu Q H . An inversion method for stratified media based on hybrid optimization algorithm. Modern Radar, 2020, 42(5): 46-51
Yang L Q , Song H B , Hao T Y . Application of impedance inversion based on BP neural network. Progress in Geophysics, 2005, 20(1): 34-37
Yao M , Gao G , Hu R Q . Improved Bayesian inversion algorithm. Progress in Geophysics, 2020, 35(5): 1911-1918.
Yi Y Y , Wang J Y . Lectures on non-linear inversion methods of geophysical data (10) — Particle swarm optimization inversion method. Chinese Journal of Engineering Geophysics, 2009, 6(4): 385-389
Yin X Y , Zhang S X . Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation. Geophysics, 2014, 79(5): R221-R232
Yu X D , Lu C D , Wang X B . Adaptive trans-dimensional Bayesian inversion of airborne time-domain electromagnetic data. Progress in Geophysics, 2020, 35(5): 2023-2032.
Zhang D L , Tao X X , Zhou Z H . Comparison of green's function of near-field ground motion due to analytical method and numerical method. Northwestern Seismological Journal, 2004, 26(3): 199-205
Zhang F C , Yin X Y , Wu G C . Impedance inversion by using annealing neural network. Journal of the University of Petroleum, China, 1997, 21(6): 16-18 16-18, 23
Zhang F C , Xiao Z B , Yin X Y . Bayesian stochastic inversion constrained by seismic data. Oil Geophysical Prospecting, 2014, 49(1): 176-182
Zhao Z W , Wang D H , Li H . Approximate Bayesian estimation for parameters in Poisson regression under quadratic loss function. Journal of Jilin University (Science Edition), 2008, 46(5): 836-840
Zheng Y , Ma H S , J . Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 2009, 52(6): 739-753
Zhou L Q , Liu F T , Chen X F . Simultaneous tomography of 3-D velocity structure and interface. Chinese Journal of Geophysics, 2006, 49(4): 1062-1067
Zhou S M , Liu J X , Sun H L . Study of one-dimensional magnetotelluric regularized inversion based on non-negative least squares method. Chinese Journal of Engineering Geophysics, 2017, 14(3): 253-261
, , . 基于模拟退火算法的大地电磁和地震数据贝叶斯联合反演. 东华理工大学学报(自然科学版), 2016, 39(1): 59-66
前伟 , , . 改进型粒子群算法及其在GPR全波形反演中的应用. 物探与化探, 2019, 43(1): 90-99
, 小红 , 召曦 . 重力密度界面反演方法研究进展. 地球物理学进展, 2014, 29(1): 223-228.
万鹏 , 振洪 . InSAR资料约束下震源参数的PSO混合算法反演策略. 地球物理学进展, 2010, 25(4): 1189-1196.
月萍 , 三明 , 阜超 . 区域地壳垂直运动研究中的模型误差及其影响. 大地测量与地球动力学, 2015, 35(1): 21-25
宗海 . 中国南北地震带中北部最小完整性震级的探讨. 西北大学学报(自然科学版), 1994, 24(5): 411-416
桂武 , , 胜良 . 求解MSA问题的新型遗传算法. 兰州理工大学学报, 2005, 31(3): 91-93
星达 , , . 地球物理反演问题中的贝叶斯方法研究. 地球与行星物理论评, 2022, 53(2): 159-171
志才 , , 双根 . 基于GPS观测数据的汶川地震断层形变反演分析. 测绘学报, 2009, 38(2): 108-113 108-113, 119
, 广彬 , 洪涛 . 卫星重力梯度数据确定地球重力场的正则化方法研究. 地球物理学进展, 2019, 34(4): 1323-1327.
甲美 , 孟潭 , . 地形效应影响下地震动参数与斜坡稳定性的相关性研究. 地震学报, 2015, 37(5): 865-874
, , 智奇 . 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476
正林 , 永光 . 地震波传播数值模拟. 地球物理学进展, 2004, 19(4): 933-941
军还 . 和极大似然估计——一种新的估计准则. 桂林冶金地质学院学报, 1994, 14(4): 436-444
学明 , 家映 . 地球物理资料非线性反演方法讲座(四) 遗传算法. 工程地球物理学报, 2008, 5(2): 129-140
, 生昌 . 解非线性反演问题的新策略. 石油物探, 1999, 38(3): 76-85
乐洋 . 基于总体最小二乘的大地测量反演理论及应用研究. 测绘学报, 2012, 41(4): 629
文萍 , 庆良 . 利用遗传算法和最小二乘联合反演共和地震位错参数. 地震学报, 1999, 21(3): 285-290
晓青 , , . 四川汶川8级大地震灾害损失快速评估研究. 地震学报, 2009, 31(2): 205-211
志伟 , 力耘 , 同城 . 岩石热弹性理论及其在地球物理中的应用. 地球与行星物理论评, 2021, 52(6): 623-633
扬茂 , 才军 , . 利用断层自动剖分技术的2008年青海大柴旦MW6.3级地震InSAR反演研究. 武汉大学学报(信息科学版), 2012, 37(4): 458-462
吉仓 , 永奇 . 顾及先验信息的模型参数反演——澜沧-耿马地震位错模型参数的求定. 地壳形变与地震, 1997, 17(2): 27-32
世亮 , 玉军 . 2008年汶川大地震同震、震后形变和应力及对松坪沟地质灾害的影响. 地球学报, 2021, 42(5): 691-700
才军 , 扬茂 . 基于InSAR数据的西藏玛尼MS7.9级地震的地壳不均匀性研究. 武汉大学学报(信息科学版), 2008, 33(8): 846-849
清峰 . 基于波动方程的微地震震源位置、震源时间及VTI介质各向异性参数联合反演. 中国地震, 2021, 37(2): 285-299
丙囤 , 海涛 , . InSAR数据约束下的2022年泸定MS6.8地震震源参数及滑动分布. 大地测量与地球动力学, 2023, 43(3): 221-225
冠雨 , 锡武 , 凡顺 . 基于Shearlet变换和广义全变分正则化的地震数据重建. 地球物理学报, 2020, 63(9): 3465-3477.
佳慧 , 庆华 . 基于混合优化算法的层状介质反演方法. 现代雷达, 2020, 42(5): 46-51
立强 , 海斌 , 天珧 . 基于BP神经网络的波阻抗反演及应用. 地球物理学进展, 2005, 20(1): 34-37
, , 瑞卿 . 一种改进的贝叶斯反演算法. 地球物理学进展, 2020, 35(5): 1911-1918.
远元 , 家映 . 地球物理资料非线性反演方法讲座(十)——粒子群反演方法. 工程地球物理学报, 2009, 6(4): 385-389
小东 , 从德 , 绪本 . 时间域航空电磁数据的自适应变维贝叶斯反演研究. 地球物理学进展, 2020, 35(5): 2023-2032.
冬丽 , 夏新 , 正华 . 近场地震动格林函数的解析法与数值法对比研究. 西北地震学报, 2004, 26(3): 199-205
繁昌 , 兴耀 , 国忱 . 用模拟退火神经网络技术进行波阻抗反演. 石油大学学报(自然科学版), 1997, 21(6): 16-18 16-18, 23
繁昌 , 张波 , 兴耀 . 地震数据约束下的贝叶斯随机反演. 石油地球物理勘探, 2014, 49(1): 176-182
志文 , 德辉 , . 二次损失函数下Poisson回归模型中参数的近似Bayes估计. 吉林大学学报(理学版), 2008, 46(5): 836-840
, 宏生 , . 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系. 中国科学(D辑: 地球科学), 2009, 39(4): 413-426
龙泉 , 福田 , 晓非 . 三维介质中速度结构和界面的联合成像. 地球物理学报, 2006, 49(4): 1062-1067
绍民 , 建新 , 欢乐 . 基于非负最小二乘法的一维MT正则化反演研究. 工程地球物理学报, 2017, 14(3): 253-261

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(3065 KB)

Accesses

Citation

Detail

Sections
Recommended

/