Anti-interference processing for CSAMT based on deep learning and joint de-noising

WeiQiang LIU, PinRong LIN, RuJun CHEN, Kun ZHANG, ChangXin CHEN, Xu LIU

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1457-1473.

PDF(8714 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8714 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1457-1473. DOI: 10.6038/pg2024HH0341

Anti-interference processing for CSAMT based on deep learning and joint de-noising

Author information +
History +

Abstract

Controlled-Source Audio Magnetotelluric (CSAMT) is a near-surface geophysical method that developed on the basis of Magnetotelluric method (MT). With the development of social economy,the data quality of CSAMT has also been seriously disturbed by noise interference. In practical exploration,the time series of electromagnetic field is usually superimposed with large-scale trend drift,short-term sudden strong interference and peak impulsive outliers,resulting in the distortion of the calculated resistivity spectrum. In this paper,an anti-interference processing method based on deep learning and joint de-noising is proposed to preprocess CSAMT time series. Firstly,a forward algorithm of electromagnetic time series of layered earth controllable source is proposed,which is used to generate standard electromagnetic signals without noise interference. Then,a Long and Short Term Memory Neural Network (LSTM) classifier is trained to recognize the noise. Finally,the improved Empirical Mode Decomposition (EMD) algorithm,correlation based data selection algorithm and robust statistical algorithm are jointly used to de-noise the CSAMT time series. The test results by simulated data show that the recognition accuracy of LSTM for noise interference can reach more than 95%,and the three noise reduction algorithms can reduce the data error from about 20% to less than 3%. Finally,the proposed method is applied to the actual data set of a metal mining area in Inner Mongolia. the accuracy of low-frequency resistivity and phase was effectively improved.

Cite this article

Download Citations
WeiQiang LIU , PinRong LIN , RuJun CHEN , et al . Anti-interference processing for CSAMT based on deep learning and joint de-noising[J]. Progress in Geophysics. 2024, 39(4): 1457-1473 https://doi.org/10.6038/pg2024HH0341

References

Benesty J , Chen J D , Huang Y T . On the importance of the Pearson correlation coefficient in noise reduction. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(4): 757 765
Cao J W , Cao M , Wang J Z . Urban noise recognition with convolutional neural network. Multimedia Tools and Applications, 2019, 78(20): 29021-29041
Chen C J , Jiang Q Y , Mo D . De-noising pseudo-random electromagnetic data using gray judgment criterion and rational function filtering. Chinese Journal of Geophysics, 2019, 62(10): 3854-3865
Cui Y , Liu Y , Yin C C . Denoising single-ship towed MCSEM data with adaptive frequency-division matching filter. Chinese Journal of Geophysics, 2023, 66(4): 1732-1742
Di Q Y , Wang R . Controlled Source Audio-Frequency Magneto Tellurics (in Chinese). Beijing: Science Press, 2008
Ge S C , Deng M , Chen K . Broadband signal generator for the approximation of a magnetotelluric source for indoor testing. Journal of Geophysics and Engineering, 2016, 13(4): 612-621
He J S . Wide Field Electromagnetic Method and Pseudo Random Signal Electrical Method (in Chinese). Beijing: Higher Education Press, 2010
He Z X , Chen Z C , Ren W J . Time-frequency electromagnetic (TFEM) method: Data acquisition system and its application. Oil Geophysical Prospecting, 2020, 55(5): 1131-1138
Holland P W , Welsch R E . Robust regression using iteratively reweighted least-squares. Communications in Statistics-Theory and Methods, 1977, 6(9): 813-827
Hu Y F , Li D Q , Yuan B . Application of pseudo-random frequency domain electromagnetic method in mining areas with strong interferences. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 774-788
Hu Y F , Liu Z J , Li D Q . Noise separation of CSEM data based on improved clustering method. Chinese Journal of Geophysics, 2024, 67(1): 394-408
Huber P J . Robust Statistical Procedures. Philadelphia: Society for Industrial and Applied Mathematics, 1996
Jiang E H , Chen R J , Zhu D B . Static-shift suppression and anti-interference signal processing for CSAMT based on Guided Image Filtering. Earthquake Research Advances, 2022, 2(1): 100117
Jiang F B , Dong L , Dai Q W . Using wavelet packet denoising and ANFIS networks based on COSFLA optimization for electrical resistivity imaging inversion. Fuzzy Sets and Systems, 2018, 337 93-112
Key K . Is the fast Hankel transform faster than quadrature?. Geophysics, 2012, 77(3): F21-F30
Lei D , Zhao G Z , Zhang Z J . A processing method of CSAMT data with strong electromagnetc interferences by using information entropy and rational fuction filtering. Progress in Geophysics, 2010, 25(6): 2015-2023
Li G , He Z S , Deng J Z . Robust CSEM data processing by unsupervised machine learning. Journal of Applied Geophysics, 2021a, 186 104262
Li G , He Z S , Tang J T . Dictionary learning and shift-invariant sparse coding denoising for controlled-source electromagnetic data combined with complementary ensemble empirical mode decomposition. Geophysics, 2021b, 86(3): E185-E198
Li G , Liu N J , Zhang C F . Research and design of a transmission system for time-frequency-domain electromagnetic method. IEEE Access, 2019, 7 153999-154007
Li G , Wu S L , Cai H Z . IncepTCN: A new deep temporal convolutional network combined with dictionary learning for strong cultural noise elimination of controlled-source electromagnetic data. Geophysics, 2023, 88(4): E107-E122
Li Y G , Duan S M . Data preprocessing of marine controlled-source electromagnetic data. Periodical of Ocean University of China, 2014, 44(10): 106-112
Liu N . Preprocessing and research of denoising methods for marine controlled source electromagnetic data [Ph. D. thesis] (in Chinese). Changchun: Jilin University, 2015
MacLennan K , Li Y G . Denoising multicomponent CSEM data with equivalent source processing techniques. Geophysics, 2013, 78(3): E125-E135
Meier M A , Ross Z E , Ramachandran A . Reliable real-time seismic signal/noise discrimination with machine learning. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 788-800
Mo D , Jiang Q Y , Li D Q . Controlled-source electromagnetic data processing based on gray system theory and robust estimation. Applied Geophysics, 2017, 14(4): 570-580
Myer D , Constable S , Key K . Broad-band waveforms and robust processing for marine CSEM surveys. Geophysical Journal International, 2011, 184(2): 689-698
Nocedal J , Öztoprak F , Waltz R A . An interior point method for nonlinear programming with infeasibility detection capabilities. Optimization Methods and Software, 2014, 29(4): 837-854
Por E , van Kooten M , Sarkovic V . Nyquist-Shannon sampling theorem. Leiden University, 2019, 1 1
Song X J , Wang X L , Dong Z . Analysis of pseudo-random sequence correlation identification parameters and anti-noise performance. Energies, 2018, 11(10): 2586
Tang J T , He J S . Controlled Source Audio Magnetotelluric Method and Application (in Chinese). Changsha: Central South University Press, 2005
Tang W W , Li Y G , Oldenburg D W . Removal of galvanic distortion effects in 3D magnetotelluric data by an equivalent source technique. Geophysics, 2018, 83(2): E95-E110
Wang M , Jin S , Wei W B . The technique analysis and achievement of the high power borehole-ground electromagnetic synchronous transmitter system. Chinese Journal of Geophysics, 2019, 62(10): 3794-3802
Wu X , Xue G Q , Zhao Y . A deep learning estimation of the earth resistivity model for the airborne transient electromagnetic observation. Journal of Geophysical Research: Solid Earth, 2022, 127(3): e2021JB023185
Xu T T , Wang Z X , Xiao Z W . Magnetotelluric power frequency interference suppression based on LSTM recurrent neural network. Progress in Geophysics, 2020, 35(5): 2016-2022
Yang Y , He J S , Li D Q . A noise evaluation method for CSEM in the frequency domain based on wavelet transform and analytic envelope. Chinese Journal of Geophysics, 2018, 61(1): 344-357
Zahn C T , Roskies R Z . Fourier descriptors for plane closed curves. IEEE Transactions on Computers, 1972, C-21(3): 269-281
Zhang B M , Jiang Q Y , Mo D . A novel method for handling gross errors in electromagnetic prospecting data. Chinese Journal of Geophysics, 2015, 58(6): 2087-2102
Zhang X , Li D Q , Li J . Signal-noise identification for wide field electromagnetic method data using multi-domain features and IGWO-SVM. Fractal and Fractional, 2022, 6(2): 80
Zhao H T , Liu L H , Wu K . Constant voltage-clamping bipolar pulse current source for transient electromagnetic system. Electric Power Components and Systems, 2013, 41(10): 960-971
Zhou C , Tang J T , Pang C . A theory and simulation study on the space-time array hybrid source electromagnetic method. Chinese Journal of Geophysics, 2019, 62(10): 3827-3842
Zhou H G , Yao Y , Liu C S . Feasibility of signal enhancement with multiple grounded-wire sources for a frequency-domain electromagnetic survey. Geophysical Prospecting, 2018, 66(4): 818-832
Ziolkowski A , Wright D , Mattsson J . Comparison of pseudo-random binary sequence and square-wave transient controlled-source electromagnetic data over the Peon gas discovery, Norway. Geophysical Prospecting, 2011, 59(6): 1114-1131
超健 , 奇云 , . 基于灰色判别准则和有理函数滤波的伪随机电磁数据去噪. 地球物理学报, 2019, 62(10): 3854-3865
, , 长春 . 单船拖曳可控源电磁数据自适应分频匹配滤波消噪方法. 地球物理学报, 2023, 66(4): 1732-1742
青云 , . 可控源音频大地电磁数据正反演及方法应用. 北京: 科学出版社, 2008
继善 . 广域电磁法和伪随机信号电法. 北京: 高等教育出版社, 2010
展翔 , 忠昌 , 文静 . 时频电磁(TFEM)勘探技术: 数据采集系统. 石油地球物理勘探, 2020, 55(5): 1131-1138
艳芳 , 子杰 , 帝铨 . 基于优化聚类的人工源电磁法数据信噪分离方法. 地球物理学报, 2024, 67(1): 394-408
, 国泽 , 忠杰 . 强干扰地区CSAMT数据信息熵与有理函数滤波的处理方法. 地球物理学进展, 2010, 25(6): 2015-2023
予国 , 双敏 . 海洋可控源电磁数据预处理方法研究. 中国海洋大学学报(自然科学版), 2014, 44(10): 106-112
. 海洋可控源电磁数据典型预处理及几种去噪方法研究[博士论文]. 长春: 吉林大学, 2015
井田 , 继善 . 可控源音频大地电磁法及其应用. 长沙: 中南大学出版社, 2005
, , 文博 . 大功率井-地电磁同步发射技术分析与系统实现. 地球物理学报, 2019, 62(10): 3794-3802
滔滔 , 中兴 , 卓伟 . 基于LSTM循环神经网络的大地电磁工频干扰压制. 地球物理学进展, 2020, 35(5): 2016-2022
, 继善 , 帝铨 . 在频率域基于小波变换和Hilbert解析包络的CSEM噪声评价. 地球物理学报, 2018, 61(1): 344-357
必明 , 奇云 , . 电磁勘探数据粗大误差处理的一种新方法. 地球物理学报, 2015, 58(6): 2087-2102
, 井田 , . 时空阵列混场源电磁法理论及模拟研究. 地球物理学报, 2019, 62(10): 3827-3842

感谢中南大学、长沙巨杉科技公司等单位对本研究的帮助,感谢审稿专家对本文提出的修改意见.

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(8714 KB)

Accesses

Citation

Detail

Sections
Recommended

/