Study of fast joint physical inversion methods of gravity and magnetic data with undulating observation surface constraints

LiLi LI, JianYe ZHOU, GuoQing MA, ZongRui LI

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1447-1456.

PDF(7602 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7602 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1447-1456. DOI: 10.6038/pg2024HH0390

Study of fast joint physical inversion methods of gravity and magnetic data with undulating observation surface constraints

Author information +
History +

Abstract

Joint inversion of gravity and magnetic can directly obtain the underground density and magnetic distribution by synthesizing the characteristics of gravity and magnetic data,and effectively reveal different lithology distribution and underground structure,which is an important means of mineral resources exploration. The actual surface of the earth and the observed surface of the airborne gravity and magnetic survey that fluctuates along the terrain are both undulating. In order to realize the highly efficient joint inversion of the undulating observation surfaces,we have established a fast joint physical inversion method for gravity and magnetic data under the constraints of undulating observation surfaces. Firstly,the data is flattened according to the maximum observed height. Then,Block-Toeplitz-Toeplitz-Block(BTTB)-FFT is used to achieve fast inversion,and the space between the converted observation plane and the actual observation plane is used as a constraint to eliminate the multiple solutions caused by the calculation of invalid grid cells. Therefore,this method can achieve high efficiency inversion without increasing the multiplicity of solutions due to additional partition elements. Model tests show that this method can effectively improve the computational efficiency by more than 32 times without losing the accuracy of inversion calculation,and has good stability for noisy data inversion. Finally,we applied this method to Sankeshu Depression,Tonghua Basin,eastern Jilin Province,China,and obtained the distribution of basement and igneous rocks in this area. The average depth of basin basement in this area is about 2.5 km,and the development of igneous rocks is mainly concentrated in the area with large basement depth,which provides important basic geological information for the next oil and gas exploration.It also provides important guiding significance for oil and gas exploration and deployment in the eastern peripheral new area of Songliao Basin.

Cite this article

Download Citations
LiLi LI , JianYe ZHOU , GuoQing MA , et al. Study of fast joint physical inversion methods of gravity and magnetic data with undulating observation surface constraints[J]. Progress in Geophysics. 2024, 39(4): 1447-1456 https://doi.org/10.6038/pg2024HH0390

References

Chen L W . A study of bit-field extended spatial domain algorithms for geomagnetic navigation[Ph. D. thesis] (in Chinese). Changsha: University of National Defence Science and Technology, 2013
Chen L W , Liu L B . Fast and accurate forward modelling of gravity field using prismatic grids. Geophysical Journal International, 2019, 216(2): 1062 1071
Chen Z Y . Finite element method for gravity and magnetic fields. Geophysical and Geochemical Exploration, 1981, 5(3): 153-158
Fregoso E , Gallardo L A . Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics, 2009, 74(4): L31-L42
Gallardo L A , Meju M A . Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophysical Research Letters, 2003, 30(13): 1658
Geng M X , Hu X Y , Zhang H L . 3D inversion of potential field data using a marginalizing probabilistic method. Geophysics, 2018, 83(5): G93-G106
Guo W B , Zhu Z Q , Lu G Y . 3-D gravity inversion for physical properties using BP network. Progress in Geophysics, 2012, 27(2): 409-416
Hogue J D , Renaut R A , Vatankhah S . A tutorial and open source software for the efficient evaluation of gravity and magnetic kernels. Computers & Geosciences, 2020, 144 104575
Last B J , Kubik K . Compact gravity inversion. Geophysics, 1983, 48(6): 713-721
Li D . Reconstruction method of gravity and magnetic fields by equivalent sources[Ph. D. thesis] (in Chinese). Wuhan: China University of Geosciences, 2018
Li T L , Zhang R Z , Pak Y C . Multiple joint inversion of geophysical data with sub-region crossgradient constraints. Chinese Journal of Geophysics, 2016, 59(8): 2979-2988
Liu D J , Hong T Q , Liao X T . Iterative solution of integral equation for potential field continuation from an irregular surface to a horizontal plane. Chinese Journal of Geophysics, 2012, 55(10): 3467-3476
Pilkington M , Thurston J B . Draping corrections for aeromagnetic data: line- versus grid-based approaches. Exploration Geophysics, 2001, 32(2): 95-101
Portniaguine O , Zhdanov M S . 3-D magnetic inversion with data compression and image focusing. Geophysics, 2002, 67(5): 1532-1541
Qiang J K , Zhang W Y , Lu K . A fast forward algorithm for three-dimensional magnetic anomaly on undulating terrain. Journal of Applied Geophysics, 2019, 166 33-41
Tikhonov A N , Arsenin V Y . Solutions of Ill-Posed Problems. New York: John Wiley and Sons, Inc, 1977
Vogel C R . Computational Methods for Inverse Problems. Philadelphia: Society for Industrial and Applied Mathematics, 2002
Wang D D , Zhao S , Zhang W H . Lithofacies identification and deep structure of Tonghua area in the periphery of Songliao Basin based on high-precision gravity-magnetic electrical survey. Geology in China, 2020, 47(4): 1056-1068
Wu L Y , Tian G . High-precision Fourier forward modeling of potential fields. Geophysics, 2014, 79(5
Wu L Y . Efficient modeling of gravity fields caused by sources with arbitrary geometry and arbitrary density distribution. Surveys in Geophysics, 2018, 39(3): 401-434
Wu W L , Gao Y F , Gu G W . Gravity and magnetic 3D fast forward computing with rolling topography. Computing Techniques for Geophysical and Geochemical Exploration, 2009, 31(3): 179-182
Xia C N . Study on regularization parameter choice—Based on the L-curve[Master's thesis] (in Chinese). Guangzhou: Jinan University, 2016
Xu S Z . Boundary Element Method in Geophysics (in Chinese). Tulsa: Society of Exploration Geophysicists, 2001 63-67
Xu S Z . The integral-iteration method for continuation of potential fields. Chinese Journal of Geophysics, 2006, 49(4): 1176-1182
Yao C L , Hao T Y , Guan Z N . Restrictions in gravity and magnetic inversions and technical strategy of 3d properties inversion. Geophysical & Geochemical Exploration, 2002, 26(4): 253-257
Yao C L , Hao T Y , Guan Z N . High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms. Chinese Journal of Geophysics, 2003, 46(2): 252-258
Yong X Y . Research on high-precision gravity and magnetic data processing method with multi-source equivalent layer[Master's thesis] (in Chinese). Changchun: Jilin University, 2021
Zhang Y L , Wong Y S . BTTB-based numerical schemes for three-dimensional gravity field inversion. Geophysical Journal International, 2015, 203(1): 243-256
Zhang Y L , Wong Y S , Lin Y F . BTTB-RRCG method for downward continuation of potential field data. Journal of Applied Geophysics, 2016, 126 74-86
龙伟 . 面向地磁导航的位场延拓空间域算法研究[博士论文]. 长沙: 国防科学技术大学, 2013
振炎 . 重磁场的有限元法曲化平. 物探与化探, 1981, 5(3): 153-158
文斌 , 自强 , 光银 . 重力异常的BP神经网络三维物性反演. 地球物理学进展, 2012, 27(2): 409-416
. 基于等效源技术的重磁场重构方法[博士论文]. 武汉: 中国地质大学, 2018
桐林 , 镕哲 , 英哲 . 部分区域约束下的交叉梯度多重地球物理数据联合反演. 地球物理学报, 2016, 59(8): 2979-2988
东甲 , 天求 , 旭涛 . 位场曲化平积分方程的迭代解. 地球物理学报, 2012, 55(10): 3467-3476
丹丹 , , 文浩 . 松辽盆地外围通化地区高精度重磁电特征及其构造格架. 中国地质, 2020, 47(4): 1056-1068
文鹂 , 艳芳 , 观文 . 起伏地形重磁三维快速正演计算. 物探化探计算技术, 2009, 31(3): 179-182
超男 . 基于L曲线的正则化参数选取研究[硕士论文]. 广州: 暨南大学, 2016
世浙 . 位场延拓的积分-迭代法. 地球物理学报, 2006, 49(4): 1176-1182
长利 , 天珧 , 志宁 . 重磁反演约束条件及三维物性反演技术策略. 物探与化探, 2002, 26(4): 253-257
长利 , 天珧 , 志宁 . 重磁遗传算法三维反演中高速计算及有效存储方法技术. 地球物理学报, 2003, 46(2): 252-258
晓宇 . 多源等效层的高精度重磁数据处理方法研究[硕士论文]. 长春: 吉林大学, 2021

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(7602 KB)

Accesses

Citation

Detail

Sections
Recommended

/