Study of focal mechanism and aftershocks of the MS6.1 earthquake in Lushan on June 1th, 2022

JunPeng LI, ZhenBo WU, JinRong SU, Kun ZOU, PingPing LI

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1315-1329.

PDF(15129 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(15129 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1315-1329. DOI: 10.6038/pg2024HH0430

Study of focal mechanism and aftershocks of the MS6.1 earthquake in Lushan on June 1th, 2022

Author information +
History +

Abstract

According to the measurement of the China Earthquake Networks Center, at 17:00:08 on June 1, 2022, Beijing time, a MS6.1 earthquake occurred in Lushan County, Sichuan Province. Three minutes later, another MS4.5 aftershock (the largest aftershock of this earthquake sequence) occurred. From the epicenter announced by the China Earthquake Networks Center, the epicenter of MS6.1 mainshock is very close to that of the 2013 Lushan MS7.0 earthquake (about 10 km), and the seismogenic fault of the former event is still controversial nowadays. The focal mechanisms of the 2022 mainshock and its largest aftershock may shed more light on this problem. In this paper, firstly based on the waveform data recorded by the broadband seismic stations deployed by the Sichuan Seismic Network, we use ISOLA software for waveform fitting to obtain the double couple focal mechanism of two earthquakes. The result of 2022 mainshock as follows: 222°/43°/104° (nodal plane Ⅰ: strike/dip/slip) and 23°/48°/76° (nodal plane Ⅱ), centroid depth 16 km, and moment magnitude MW5.9. The result of aftershock is shown as 237°/36°/109° (nodal plane Ⅰ), 34°/56°/76° (nodal plane Ⅱ), centroid depth 17 km, and moment magnitude MW5.0. These two earthquakes are mainly trust type. Secondly, based on the continuous waveforms recorded by the seismic stations within 150 km epicentral distance during 2022-06-01 to 2022-06-10, we use LOC-FLOW software to identify and relocate the aftershocks. A total of 838 aftershocks are obtained, most of which are distributed in the northwest of the mainshock in the horizontal map. In the depth profile, on one hand most aftershocks are distributed along the up-dip direction of the mainshock, on the other hand it indicates that the fault plane southeastward inclines. Theoretically, the recorded waveform can be calculated by the convolution of source time function, propagation path effect and instrument response function. Assuming two events closely nearby each other are recorded in the same seismic station, the difference between two waveforms approximately reflects the difference of earthquake rupture process due to the same instrument response and similar propagation path effect. In this paper, the mainshock waveforms of two Lushan events recorded by 31 azimuthal stations are compared and analyzed, and it turns out two waveforms at each station show good consistence in the period range 10~20 s, indicating the rupture process for these two events may have similarities to some extent. The study area locates in the southern Longmenshan fault belt, the surface is mainly dominated by the faults with NE-SW strike and NW dip. However, according to the focal mechanisms and aftershock analysis in this study, we speculate that the 2022 Lushan earthquake should occur on a blind thrust fault inclining to SE. It is consistent with the NW-SE tectonic stress field in this area that has long been subjected to lateral extrusion on the Tibetan Plateau.

Cite this article

Download Citations
JunPeng LI , ZhenBo WU , JinRong SU , et al . Study of focal mechanism and aftershocks of the MS6.1 earthquake in Lushan on June 1th, 2022[J]. Progress in Geophysics. 2024, 39(4): 1315-1329 https://doi.org/10.6038/pg2024HH0430

References

Bi J M , Song C , Ma Y . Comparative analysis of the activity characteristics and the aftershock forecasting efficiency of two earthquake sequences in Lushan. Journal of Seismological Research, 2023, 46(2): 204 215
Bouchon M . A simple method to calculate Green's functions for elastic layered Media. Bulletin of the Seismological Society of America, 1981, 71(4): 959-971
Chen L C , Ran Y K , Wang H . The Lushan MS7.0 earthquake and activity of the southern segment of the Longmenshan fault zone. Chin. Sci. Bull., 2013, 58(28-29): 3475-3482
Chen Y T , Yang Z X , Zhang Y . From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scientia Sinica Terrae, 2013, 43(6): 1064-1072
Chen Z X , Wang L N , Yang G . Geological structures and potential petroleum exploration areas in the southwestern Sichuan fold-thrust belt, SW China. Petroleum Exploration and Development, 2020, 47(4): 653-667
Deng Q D , Chen S F , Zhao X L . Tectonics, scismisity and dynamics of Longmenshan mountains and its adjacent regions. Seismology and Geology, 1994, 16(4): 389-403
Hubbard J , Shaw J H . Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature, 2009, 458(7235): 194-197
Jia D , Li Y Q , Lin A M . Structural model of 2008 MW7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China. Tectonophysics, 2010, 491(1-4): 174-184
Jiang P , Li P P , Li T L . Strong-motion recordings in MS4.7 Beichuan, Sichuan earthquake on October 22, 2020. Reviews of Geophysics and Planetary Physics, 2021, 52(2): 227-233
Kissling E , Ellsworth W L , Eberhart-Phillips D . Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 1994, 99(B10): 19635-19646
Li B , Guo Q L , Jiang D W . Response of shallow geostress to deep geostress and seismic hazard analysis before and after the Wenchuan and Lushan earthquakes. Acta Geologica Sinica, 2023, 97(2): 339-348
Li B , Xie F R , Huang J S . In situ stress state and seismic hazard in the Dayi seismic gap of the Longmenshan thrust belt. Science China Earth Sciences, 2022, 65(7): 1388-1398
Li C Y , Xu X W , Gan W J . Seismogenic structures associated with the 20 April 2013 MS7.0 Lushan earthquake, Sichuan Province. Seismology and Geology, 2013, 35(3): 671-683
Li J B , Li Y , Zhao G H . Structural features and genetic mechanism of Xiongpo anticline in Sichuan basin. Geoscience, 2014, 28(4): 761-771
Li P P , Jiang P , Li T L . The strong ground motion characteristics of MS6.0 Luxian, Sichuan, earthquake on l6 September 2021. Acta Seismologica Sinica, 2022, 44(2): 260-270
Li Z G , Liu-Zeng J , Almeida R . Re-evaluating seismic hazard along the southern Longmen Shan, China: Insights from the 1970 Dayi and 2013 Lushan earthquakes. Tectonophysics, 2017, 717 519-530
Liang H , Dai D Q , Yang Z G . Preliminary analysis of emergency production and source parameters of the M6.1 earthquake on June 01, 2022 in Lushan, Sichuan Province. Earthquake Research in China, 2022, 38(2): 360-369
Liu J Q , Liu C , Lei J S . The moment tensors of the 2013 Qianguo MS5.8 seismic swarm. Chinese Journal of Geophysics, 2017, 60(9): 3418-3431
Lu R Q , Fang L H , Guo Z . Detailed structural characteristics of the 1 June 2022 MS6.1 Sichuan Lushan strong earthquake. Chinese Journal of Geophysics, 2022, 65(11): 4299-4310
Lu R Q , Xu X W , He D F . Shallow sedimentation and tectonic deformation in the southern Longmen Shan: Constraints on the seismotectonics of the 2013 Lushan MW6.7 earthquake. Chinese Journal of Geophysics, 2017, 60(8): 2924-2934
Ma C H , Qian F , Zhang H M . Simulation of rupture process and its influence factors of the 2013 MS7.0 Lushan earthquake. Chinese Journal of Geophysics, 2021, 64(1): 170-181
Ran Y K , Wang H , Chen L C . Late-Quaternary fault activity of the Longmen Shan fault zone—Evidence from paleoseismic trenching. Chinese Journal of Geophysics, 2018, 61(5): 1938-1948
Sokos E , Zahradník J . Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software. Seismological Research Letters, 2013, 84(4): 656-665
Sokos E N , Zahradník J . ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers and Geosciences, 2008, 34(8): 967-977
Waldhauser F , Ellsworth W L . A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368
Wang F Y , Zhao C B , Feng S Y . Seismogenic structure of the 2013 Lushan MS7.0 earthquake revealed by a deep seismic reflection profile. Chinese Journal of Geophysics, 2015, 58(9): 3183-3192
Wang L , Zhou Q Y , Wang J . The research of the seismogenic structure of the Lushan earthquake based on the synthesis of the deep seismic data and the surface tectonic deformation. Seismology and Geology, 2016, 38(2): 458-476
Wang S Y , Xu C , Liu S . Landslides triggered by earthquake in south Longmenshan fault and Tianquan earthquake in 1327. Journal of Geodesy and Geodynamics, 2018, 38(6): 609-613
Xie L , Fang N , Liu X G . Rapid report of June 1, 2022 MW5.9 Lushan earthquake, China with geodetic and teleseismic data. Earthquake Research Advances, 2023, 3(1): 100172
Xu X W , Wen X Z , Han Z J . Lushan MS7.0 earthquake: A blind reserve-fault event. Chin. Sci. Bull., 2013, 58(28-29): 3437-3443
Yi G X , Long F , Vallage A . Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan earthquake sequence, southwestern China. Chinese Journal of Geophysics, 2016, 59(10): 3711-3731
Zhang G , Wang X B , Tang Y S . Three-dimensional electrical structure and seismogenic environment of the crust-mantle in the Lushan earthquake region, China. Tectonophysics, 2023, 856 229813
Zhang M , Ellsworth W L , Beroza G C . Rapid earthquake association and location. Seismological Research Letters, 2019, 90(6): 2276-2284
Zhang Y Q , Dong S W , Hou C T . Preliminary study on the seismotectonics of the 2013 Lushan MS7.0 earthquake, West Sichuan. Acta Geologica Sinica, 2013, 87(6): 747-758
Zhang Z Q , Yao H J , Wang W T . 3-D crustal azimuthal anisotropy reveals multi-stage deformation processes of the Sichuan Basin and its adjacent area, SW China. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB023289
Zhao J , Ren J W , Jiang Z S . Fault locking and deformation characteristics in southwestern segment of the Longmenshan fault. Journal of Seismological Research, 2018, 41(2): 216-225
Zheng W J , Wang W T , Li C Y . The deformation of the Xiongpo anticline and the activity of Pujiang-Xinjin fault. Seismology and Geology, 2008, 30(4): 957-967
Zhou R J , Li Y , Su J R . Seismogenic structure of Lushan MW6.6 earthquake, Sichuan, China. Journal of Chengdu University of Technology (Science and Technology Edition), 2013, 40(4): 364-370
Zhu W Q , Beroza G C . PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 2019, 216(1): 261-273
金孟 , , . 芦山两次强震序列活动特征及余震预测效能对比分析. 地震研究, 2023, 46(2): 204-215
立春 , 勇康 , . 芦山地震与龙门山断裂带南段活动性. 科学通报, 2013, 58(20): 1925-1932
运泰 , 智娴 , . 从汶川地震到芦山地震. 中国科学(地球科学), 2013, 43(6): 1064-1072
竹新 , 丽宁 , . 川西南冲断带深层地质构造与潜在油气勘探领域. 石油勘探与开发, 2020, 47(4): 653-667
起东 , 社发 , 小麟 . 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 1994, 16(4): 389-403
, 萍萍 , 同林 . 2020年10月22日四川北川MS4.7地震强震动特征分析. 地球与行星物理论评, 2021, 52(2): 227-233
, 啟良 , 大伟 . 汶川和芦山地震前后浅部应力对深部应力的响应及地震危险性分析. 地质学报, 2023, 97(2): 339-348
, 富仁 , 金水 . 龙门山断裂带大邑地震空区地应力状态与地震危险性. 中国科学(地球科学), 2022, 52(7): 1409-1418
传友 , 锡伟 , 卫军 . 四川省芦山MS7.0地震发震构造分析. 地震地质, 2013, 35(3): 671-683
敬波 , , 国华 . 四川盆地熊坡背斜构造特征及其成因机制. 现代地质, 2014, 28(4): 761-771
萍萍 , , 同林 . 2021年9月16日四川泸县MS6.0地震强地面运动特征分析. 地震学报, 2022, 44(2): 260-270
, 丹青 , 志高 . 2022年6月1日四川芦山6.1级地震应急产品及震源参数初步分析. 中国地震, 2022, 38(2): 360-369
俊清 , , 建设 . 2013年前郭MS5.8震群矩张量研究. 地球物理学报, 2017, 60(9): 3418-3431
人齐 , 立华 , . 2022年6月1日四川芦山MS6.1强震构造精细特征. 地球物理学报, 2022, 65(11): 4299-4310
人齐 , 锡伟 , 登发 . 龙门山南段芦山震区浅层沉积与构造变形——对深部发震构造的约束. 地球物理学报, 2017, 60(8): 2924-2934
聪慧 , , 海明 . 2013年MS7.0芦山地震的动力学破裂过程及其影响因素. 地球物理学报, 2021, 64(1): 170-181
勇康 , , 立春 . 龙门山断裂带晚第四纪的大地震活动——来自古地震研究的资料. 地球物理学报, 2018, 61(5): 1938-1948
夫运 , 成彬 , 少英 . 深反射剖面揭示的芦山7.0级地震发震构造. 地球物理学报, 2015, 58(9): 3183-3192
, 青云 , . 基于深部地震资料与地表变形资料的芦山地震发震构造研究. 地震地质, 2016, 38(2): 458-476
世元 , , . 龙门山前山断裂南段强震崩塌与1327年天全地震. 大地测量与地球动力学, 2018, 38(6): 609-613
锡伟 , 学泽 , 竹军 . 四川省芦山7.0级强震: 一次典型的盲逆断层型地震. 科学通报, 2013, 58(20): 1887-1893
桂喜 , , Vallage A . 2013年芦山地震序列震源机制与震源区构造变形特征分析. 地球物理学报, 2016, 59(10): 3711-3731
岳桥 , 树文 , 春堂 . 四川芦山2013年MS7.0地震发震构造初步研究. 地质学报, 2013, 87(6): 747-758
, 金卫 , 在森 . 龙门山断裂带西南段闭锁与变形特征. 地震研究, 2018, 41(2): 216-225
文俊 , 伟涛 , 传友 . 熊坡背斜构造变形与蒲江-新津断裂活动特征. 地震地质, 2008, 30(4): 957-967
荣军 , , 金蓉 . 四川芦山MW6.6地震发震构造. 成都理工大学学报(自然科学版), 2013, 40(4): 364-370

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(15129 KB)

Accesses

Citation

Detail

Sections
Recommended

/