Research on retrieval for total precipitable water by FY-3D/MWRI

ChaoFan XU, YuanHong GUAN, YanSong BAO, QiFeng LU, JiangTao LI

Prog Geophy ›› 2024, Vol. 39 ›› Issue (5) : 1723-1733.

PDF(4880 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(4880 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (5) : 1723-1733. DOI: 10.6038/pg2024HH0450

Research on retrieval for total precipitable water by FY-3D/MWRI

Author information +
History +

Abstract

Water vapor is an important part of the atmosphere, and it is of great significance to realize the high-precision retrieval of water vapor content in the atmosphere for meteorological research. This paper used brightness temperature data of FY-3D/MWRI in July from 2019 to 2022 annually, with the water vapor data of ERA5 on Pacific as references, established six-channel and eight-channel random forest retrieval models (RF6 and RF8) for total precipitable water in maritime clear sky, based on the random forest algorithm. The experimental results indicated that compared to the empirical regression retrieval model, the random forest retrieval model have improved accuracy obviously, with the RF6 model achieving an improvement of about 22% and the RF8 model achieving an improvement of about 28%. Furthermore, when applying the RF6 and RF8 models which trained based on Pacific region data to the North Atlantic and South Indian Ocean, positive retrieval results were also obtained. Considering all factors, the RF8 model outperforms the RF6 model, and the RF6 model outperforms the empirical regression model.

Key words

Micro-wave radiation imager-1 / Total precipitable water / Retrieval / Random forest model / Empirical regression model

Cite this article

Download Citations
ChaoFan XU , YuanHong GUAN , YanSong BAO , et al . Research on retrieval for total precipitable water by FY-3D/MWRI[J]. Progress in Geophysics. 2024, 39(5): 1723-1733 https://doi.org/10.6038/pg2024HH0450

References

Aires F , Prigent C , Rossow W B . A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. Journal of Geophysical Research: Atmospheres, 2001, 106(D14 14887 14907.
Alishouse J C , Snyder S A , Vongsathorn J . Determination of oceanic total precipitable water from the SSM/I. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(5): 811-816
Bobylev L P , Zabolotskikh E V , Mitnik L M . Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 283-294.
Breiman L . Random forests. Machine Learning, 2001, 45(1): 5-32.
Chen H B , D R , Wei Z . Comparison of the effects of different microwave channel combinations and TB functions in the algorithm for retrieving precipitable water in the clear atmosphere. Scientia Atmospherica Sinica, 1996, 20(6): 757-762
Deeter M N . A new satellite retrieval method for precipitable water vapor over land and ocean. Geophysical Research Letters, 2007, 34(2): L02815.
Hu X Q , Huang Y F , Lu Q F . Retrieving precipitable water vapor based on the near-infrared data of FY-3A satellite. Journal of Applied Meteorological Science, 2011, 22(1): 46-56
Ji D B , Shi J C , Xiong C . A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing. Remote Sensing of Environment, 2017, 191: 313-327.
Li Z L , Jia L , Su Z B . A new approach for retrieving precipitable water from ATSR2 split-window channel data over land area. International Journal of Remote Sensing, 2003, 24(24): 5095-5117.
Liu F Q , Chen X D , Li S F . Permeability coefficient prediction of sand bodies based on random forest regression. Uranium Geology, 2023, 39(4): 653-661
Liu S T , Yan W . Study of integrated water vapor in non-raining cloud areas over oceans from satellite-borne microwave radiometric measurements. Meteorological Science and Technology, 2006, 34(3): 319-325
Wu Q , Dou F L , Guo Y . Validation of FY-3C MWRI total precipitable water products. Meteorological Monthly, 2020, 46(1): 73-79
Xue Y N , Ma L L , Wang N . Accuracy evaluation of the satellite thermal infrared radiometric calibration method based on ERA5 ocean re-analysis data. National Remote Sensing Bulletin, 2023, 27(5): 1150-1165.
Yin Y T , Liu G F , Guan J P . Validation and evaluation of AMSR-2-derived total precipitable water over sea surface using radiosonde and SSMI/S data. Marine Sciences, 2017, 41(4): 65-74
Yu C , Li Z H , Blewitt G . Global comparisons of ERA5 and the operational HRES tropospheric delay and water vapor products with GPS and MODIS. Earth and Space Science, 2021, 8(5): e2020EA001417.
Zhang H Y , Tang B H . Remote sensing retrieval of total precipitable water under clear-sky atmosphere from FY-4A AGRI data by combining physical mechanism and random forest algorithm. National Remote Sensing Bulletin, 2021, 25(8): 1836-1847
Zhang T L , Wei J , Gan J M . Precipitable water vapor retrieval with MODIS near infrared data. Spectroscopy and Spectral Analysis, 2016, 36(8): 2378-2383
Zhou A M , Bao Y S , Wei M . Derivation and comparison of water vapor between infrared channels and near infrared channels from FY-3. Remote Sensing Technology and Application, 2017, 32(4): 651-659
洪滨 , 达仁 , . 空基微波辐射计遥感晴天大气可降水量: 不同通道组合和亮温函数形式的效果的比较分析. 大气科学, 1996, 20(6): 757-762
秀清 , 意玢 , 其峰 . 利用FY-3A近红外资料反演水汽总量. 应用气象学报, 2011, 22(1): 46-56
富强 , 晓冬 , 盛富 . 基于随机森林回归的砂体渗透系数预测. 铀矿地质, 2023, 39(4): 653-661
松涛 , . 星载微波辐射计反演洋面非降水云区水汽总量的研究. 气象科技, 2006, 34(3): 319-325
, 芳丽 , . FY-3C微波成像仪海上大气可降水产品质量检验. 气象, 2020, 46(1): 73-79
亚楠 , 灵玲 , . 基于ERA5海洋再分析资料的卫星热红外辐射定标方法精度评估. 遥感学报, 2023, 27(5): 1150-1165
延通 , 高飞 , 吉平 . 基于探空和SSMI/S资料的AMSR-2海上大气可降水产品检验与评估. 海洋科学, 2017, 41(4): 65-74
环宇 , 伯惠 . 融合物理机理与随机森林算法的FY-4A AGRI数据晴空大气可降水量遥感反演. 遥感学报, 2021, 25(8): 1836-1847
天龙 , , 敬民 . 利用MODIS近红外数据反演大气水汽含量研究. 光谱学与光谱分析, 2016, 36(8): 2378-2383
爱明 , 艳松 , . FY-3近红外与热红外资料大气柱水汽总量反演对比. 遥感技术与应用, 2017, 32(4): 651-659

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(4880 KB)

Accesses

Citation

Detail

Sections
Recommended

/