Geological characteristics of tight oil and evaluation of sweet spot in Chang 8 Member of Liuluoyu area, Ordos Basin

BaoHong ZHONG, JinFeng LI, TaoTao WEI, JiaShun GONG, Hai ZHOU, GaoRun ZHONG, YinHui REN

Prog Geophy ›› 2024, Vol. 39 ›› Issue (6) : 2357-2367.

PDF(9888 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9888 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (6) : 2357-2367. DOI: 10.6038/pg2024HH0455

Geological characteristics of tight oil and evaluation of sweet spot in Chang 8 Member of Liuluoyu area, Ordos Basin

Author information +
History +

Abstract

Liuluoyu area is a new block in the tight oil exploration and development zone of Yanchang Oilfield, and Chang8 Member is the key level of tight oil development. Affected by source rock, reservoir characteristics, reservoir pressure, source-reservoir configuration relationship, and natural fractures, Chang 8 Member tight oil has obvious oil content differences. Therefore, based on the analysis of the characteristics of source rock and reservoir, the experimental data and logging data are combined to estimate the hydrocarbon generation intensity, calculate the reservoir formation power, analyze the relationship between source rock and reservoir, and evaluate the fracture development characteristics by using the fractal dimension method. The results show that: (1) The average organic carbon content of source rocks in Chang 7 member and Chang 9 member is 10.23% and 8.67% respectively; Hydrocarbon generation intensities were (50~470)×104 t/km2 and (10~130)×104 t/km2, respectively. The residual pressure difference of Chang 7-8 and 9-8 sections is 4.0~11.0 mpa and 3.0~9.0 mpa, respectively. (2) According to the four types of source rocks in the longitudinal direction, they are: Chang 73 bottom+Chang8middle+Chang9 top development type, Chang72 member+Chang9 top development type, Chang7 member continuous development+Chang 9 top development type, Chang7 undeveloped + Chang 9 top development type; There are five hydrocarbon supply modes: "top + bottom bidirectional strong hydrocarbon supply type", "top strong hydrocarbon supply type +bottom weak hydrocarbon supply type", "top + bottom weak hydrocarbon supply type", "top + bottom weak hydrocarbon supply type" and "top + bottom medium hydrocarbon supply type". (3) R/S method was used to predict the fracture development of Chang 8 member, and H curve was constructed with H value >0.04, indicating fracture development; 0<H < 0.04, the crack is more developed; When H < 0, cracks do not develop.

Key words

Tight oil / Dessert area / Source rock / Hydrocarbon supply model / Liuluoyu

Cite this article

Download Citations
BaoHong ZHONG , JinFeng LI , TaoTao WEI , et al . Geological characteristics of tight oil and evaluation of sweet spot in Chang 8 Member of Liuluoyu area, Ordos Basin[J]. Progress in Geophysics. 2024, 39(6): 2357-2367 https://doi.org/10.6038/pg2024HH0455

References

Cheng M , Chen D X , Lei W Z , et al. The difference of source rocks in source-reservoir structure of tight sandstones of Chang 71 submember and its influence on hydrocarbon enrichment, Longdong area, Ordos Basin. Earth Science. 2023
Dai L F , Chen S J , Wang P , et al. Effect of physical properties difference on oil content for tight sandstone reservoirs in Chang 7 member of Yanchang Formation, Ordos Basin. World Petroleum Industry. 2023, 30(3 42 52
Du J M , Zhang X L , Zhong G R , et al. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil—illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin. Progress in Geophysics. 2016, 31(6): 2526-2533
Fan B J , Dong Y X , Pang X Q . Establishment of Effective Source Rock and Hydrocarbon Expulsion Quantity: Taking Nanpu Sag for Example. Journal of Central South University (Science and Technology). 2012, 43(1): 229-237
Gao J D , Li L R , Gao G R , et al. Fractured zone detection using petrophysical logs by rescaled windowed R/S analyses and discrete fracture network (DFN) of Yanchang Formation in Mahuangshan-Hongliugou Area, Ordos Basin, China. Geofluids. 2023, 2023 9255499
Hu S Y , Tao S Z , Wang M , et al. Migration and accumulation mechanisms and main controlling factors of tight oil enrichment in a continental lake basin. Petroleum Exploration and Development. 2023, 50(3): 481-490 481-490, 529
Hu S Y , Tao S Z , Yan W P , et al. Advances on continental tight oil accumulation and key technologies for exploration and development in China. Natural Gas Geoscience. 2019, 30(8): 1083-1093
Huang C X , Zhang Z H , Li Y X , et al. Hydrocarbon generation kinetics and simulation result analysis of source rocks in Yanchang formation of the Southern Ordos Basin. Journal of Oil and Gas Technology. 2013, 35(8): 21-27
Jia C Z . Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory. Petroleum Exploration and Development. 2017, 44(1): 1-11
Li G X , Lei Z D , Dong W H , et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC. China Petroleum Exploration. 2022, 27(1): 1-11
Liu G Q . Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development. 2021, 48(5): 891-902
Luo Q , Wang S C , Jia C , et al. Physical simulation of dynamic accumulation of fault-controlled gas reservoirs and its implications: a case study of typical gas reservoirs in northwestern part of Qaidam Basin. Petroleum Geology & Experiment. 2022, 44(5): 790-803
Passey Q R , Creaney S , Kulla J B , et al. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin. 1990, 74(12): 1777-1794
Qu T , Gao G , Liang X W , et al. Tight oil characteristics and source analysis of the 7th Member of the Triassic Yanchang Formation in Qingcheng area, Ordos Basin. Geological Review. 2023, 69(4): 1313-1328
Shi L , Lu S F , Li J J , et al. Evaluation of Source Rock of Chang 9 Member, Yanchang Formation, Ordos Basin. Science Technology and Engineering. 2011, 11(20): 4756-4761
Tao S Z , Hu S Y , Wang J , et al. Forming conditions, enrichment regularities and resource potentials of continental tight oil in China. Acta Petrolei Sinica. 2023, 44(8): 1222-1239
Wang F W , Chen D X , Xie G J , et al. Differential enrichment mechanism of tight sandstone oil under the control of the source-reservoir structures of Member 7 of Yanchang Formation in Qingcheng area, Ordos Basin. Acta Petrolei Sinica. 2022, 43(7): 941-956 941-956, 976
Wang Z , Zhao J Z , Meng X G , et al. Key controlling factors and enrichment mechanisms of tight reservoirs in 6th member of Triassic Yanchang Formation, Chaishangyuan area, southeastern Ordos Basin. Petroleum Geology & Experiment. 2022, 44(2): 251-261
Wolela A . Source rock potential of the Blue Nile (Abay) basin, Ethiopia. Journal of Petroleum Geology. 2007, 30(4): 389-402
Xiao Z L , Li Y , Yu J , et al. Key geochemical evidence of "near-source accumulation" of tight oil: a case study of near-source assemblage of Triassic Yanchang Formation in Ordos Basin. Petroleum Geology and Experiment. 2023, 45(3): 517-527
Yang Z , Tang Z X , Chen X , et al. "Exploring oil inside source kitchen": main types of tight oil and progress of geology-engineering integration. China Petroleum Exploration. 2020, 25(2): 73-83
Yang Z , Zou C N . "Exploring petroleum inside source kitchen": Connotation and prospects of source rock oil and gas. Petroleum Exploration and Development. 2019, 46(1): 173-184
Yuan Y , Du K F , He X , et al. Main controlling factor of Chang 8 in Ganquan-Fuxian areas, Ordos Basin. Petrochemical Industry Application. 2022, 41(7): 72-74 72-74, 102
Zhai G M . Speculations on the exploration and development of unconventional hydrocarbon resources. Natural Gas Industry. 2008, 28(12): 1-3
Zhong G R , Li Y J , Zhang G Q , et al. Determination of lower limit of effective oil filling property of Chang 63 member tight sandstone reservoir in central Ordos Basin. Progress in Geophysics. 2023, 38(6): 2663-2673
Zhong G R , Zhang X L , Du J M , et al. Source-reservoir configuration of logging evaluation for tight oil in Chang 7 member, Yanchang formation, Ordos basin. Progress in Geophysics. 2016, 31(5): 2285-2291
, 冬霞 , 文智 , et al. 鄂尔多斯盆地陇东地区长71亚段源储结构与石油赋存关系研究. 地球科学. 2023
林锋 , 世加 , , et al. 鄂尔多斯盆地延长组长7段致密砂岩储层物性差异对含油性的影响. 世界石油工业. 2023, 30(3): 42-52
江民 , 小莉 , 高润 , et al. 致密油烃源岩有机碳含量测井评价方法优选及应用——以鄂尔多斯盆地延长组长7段烃源岩为例. 地球物理学进展. 2016, 31(6): 2526-2533
柏江 , 月霞 , 雄奇 . 有效源岩的精确厘定及其排烃量: 以南堡凹陷为例. 中南大学学报(自然科学版). 2012, 43(1): 229-237
素云 , 士振 , , et al. 陆相湖盆致密油充注运聚机理与富集主控因素. 石油勘探与开发. 2023, 50(3): 481-490 481-490, 529
素云 , 士振 , 伟鹏 , et al. 中国陆相致密油富集规律及勘探开发关键技术研究进展. 天然气地球科学. 2019, 30(8): 1083-1093
彩霞 , 枝焕 , 宇翔 , et al. 鄂尔多斯盆地南部地区延长组烃源岩生烃动力学研究及模拟结果分析. 石油天然气学报. 2013, 35(8): 21-27
承造 . 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发. 2017, 44(1): 1-11
国欣 , 征东 , 伟宏 , et al. 中国石油非常规油气开发进展、挑战与展望. 中国石油勘探. 2022, 27(1): 1-11
国强 . 非常规油气勘探测井评价技术的挑战与对策. 石油勘探与开发. 2021, 48(5): 891-902
, 仕琛 , , et al. 断控气藏的动态成藏物理模拟与启示——以柴达木盆地西北地区典型气藏为例. 石油实验地质. 2022, 44(5): 790-803
, , 晓伟 , et al. 鄂尔多斯盆地庆城地区延长组7段致密油特征及油源分析. 地质论评. 2023, 69(4): 1313-1328
, 双舫 , 吉君 , et al. 鄂尔多斯盆地长9烃源岩评价. 科学技术与工程. 2011, 11(20): 4756-4761
士振 , 素云 , , et al. 中国陆相致密油形成条件、富集规律与资源潜力. 石油学报. 2023, 44(8): 1222-1239
福伟 , 冬霞 , 广杰 , et al. 鄂尔多斯盆地庆城地区延长组7段源-储结构控制下致密砂岩油的差异富集机制. 石油学报. 2022, 43(7): 941-956 941-956, 976
, 靖舟 , 选刚 , et al. 鄂尔多斯盆地东南部柴上塬区三叠系延长组长6致密油成藏主控因素及富集规律. 石油实验地质. 2022, 44(2): 251-261
正录 , , , et al. 致密油"近源成藏"关键地球化学证据——以鄂尔多斯盆地延长组近源组合为例. 石油实验地质. 2023, 45(3): 517-527
, 振兴 , , et al. "进源找油": 致密油主要类型及地质工程一体化进展. 中国石油勘探. 2020, 25(2): 73-83
, 才能 . "进源找油": 源岩油气内涵与前景. 石油勘探与开发. 2019, 46(1): 173-184
, 克锋 , , et al. 鄂尔多斯盆地甘泉-富县地区长8成藏主控因素分析. 石油化工应用. 2022, 41(7): 72-74 72-74, 102
光明 . 关于非常规油气资源勘探开发的几点思考. 天然气工业. 2008, 28(12): 1-3
高润 , 亚军 , 国强 , et al. 鄂尔多斯盆地中部长63段致密砂岩储层石油有效充注物性下限. 地球物理学进展. 2023, 38(6): 2663-2673
高润 , 小莉 , 江民 , et al. 鄂尔多斯盆地延长组长7段致密油源储配置关系测井评价. 地球物理学进展. 2016, 31(5): 2285-2291

感谢延安大学石油工程与环境工程学院在论文完成中提供分析测试条件!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(9888 KB)

Accesses

Citation

Detail

Sections
Recommended

/