Pore pressure pre-stack seismic prediction method of complicated reservoirs based on formation compaction trend ratio

XueSong XING, ChangSuo ZHOU, YingMing HE, Kui ZHANG, TianWei DU, BenRu GONG, Kui HUO

Prog Geophy ›› 2024, Vol. 39 ›› Issue (6) : 2298-2305.

PDF(3455 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(3455 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (6) : 2298-2305. DOI: 10.6038/pg2024HH0522

Pore pressure pre-stack seismic prediction method of complicated reservoirs based on formation compaction trend ratio

Author information +
History +

Abstract

The seismic prediction of pore pressure in formations holds great significance for the exploration and development of complex oil and gas reservoirs, reducing drilling costs, hydraulic fracturing, reservoir evaluation, and other researches. The phenomenon of formation overpressure is widespread in reservoirs, with multiple influencing factors including changes in fluid volume, structural squeezing of formations, and compaction. Existing methods for seismic prediction of formation pressure face challenges in obtaining the background trend of formation compaction, typically relying on theoretical rock physics modeling and three-dimensional interpolation. The established background of formation compaction often contains significant errors, leading to inaccurate predictions of formation pressure. Therefore, based on rock physics modeling theory, this paper proposes a pore pressure seismic prediction method based on normal trend ratio. First, through petrophysical analysis, the deterministic and statistical petrophysical relationship between pore pressure trend ratio and elastic impedance is constructed. Under the framework of Bayesian inversion theory, pre-stack seismic data is used to achieve direct inversion of formation compaction trend. Then, the Eaton model is combined to predict formation pore pressure. This method achieves direct seismic prediction of formation pressure trend ratio through seismic inversion, effectively avoids the problem of large indirect errors caused by three-dimensional interpolation of the normal compaction background trend of the formation and improves the accuracy of formation pressure seismic prediction. Finally, using actual well logging and seismic data in a certain area of the Bozhong Depression of Bohai Bay Basin, this method is used to conduct actual seismic prediction of pore pressure, and achieved good application results, verifying the effectiveness and applicability of the method.

Key words

Complicated reservoirs / Pore pressure / Bayesian inversion / Overpressure

Cite this article

Download Citations
XueSong XING , ChangSuo ZHOU , YingMing HE , et al . Pore pressure pre-stack seismic prediction method of complicated reservoirs based on formation compaction trend ratio[J]. Progress in Geophysics. 2024, 39(6): 2298-2305 https://doi.org/10.6038/pg2024HH0522

References

Bayes T. XLIII A letter from the late reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R. S. Philosophical Transactions (1683-1775) 1763 53 1763 269 271
Bowers G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction SPE Drilling & Completion 1995 10 2 89 95
Buland A Kolbjørnsen O Hauge R . Bayesian lithology and fluid prediction from seismic prestack data Geophysics 2008 73 3 C13 C21
Chen C Yin X Y Chen Z Q . Prediction for formation pressure coefficients based on an equivalent petrophysical model of shale Oil Geophysical Prospecting 2022 57 2 367 376 367-376, 394
Das B Chatterjee R. Mapping of pore pressure, in-situ stress and brittleness in unconventional shale reservoir of Krishna-Godavari basin Journal of Natural Gas Science and Engineering 2018 50 74 89
Dutta N C. Geopressure prediction using seismic data: current status and the road ahead Geophysics 2002 67 6 2012 2041
Grana D. Bayesian linearized rock-physics inversion Geophysics 2016 81 6 D625 D641
Grana D. Joint facies and reservoir properties inversion Geophysics 2018 83 3 M15 M24
Grana D Della Rossa E. Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion Geophysics 2010 75 3 O21 O37
Ham H H. New charts help estimate formation pressures Oil & Gas Journal 1966 64 51 58 63
Hottman C E Johnson R K. Estimation of formation pressures from log-derived shale properties AAPG Bulletin 1965 49 10 1754
Jin H Ma J F Li L . Study on the prediction method of formation pressure in the southern part of the Bodong low uplift Progress in Geophysics 2024 39 2 788 799
Larsen A L Ulvmoen M Omre H . Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model Geophysics 2006 71 5 R69 R78
Lei T Yin X Y Zong Z Y. Pore pressure prediction in orthotropic medium based on rock physics modeling of shale gas Journal of Natural Gas Science and Engineering 2020 74 103091
Li D L Ma J F Li L . Prediction method of formation pressure in abnormal pressure reservoir in Bozhong sag Progress in Geophysics 2022 37 3 1266 1273
Li Y F Sun W He W W . Prediction method of shale formation pressure based on pre-stack inversion Lithologic Reservoirs 2019 31 1 113 121
Lin Z L Sun Z T Hu H F . Pore pressure distributional characterization of shale gas reservoir in WR block of Sichuan basin Progress in Geophysics 2021 36 5 2045 2052
Ma J Si S H Liu C . Method and application of abnormal pressure logging prediction for unconventional reservoir Progress in Geophysics 2023 38 2 700 708
Mcpherson B J O L Garven G. Hydrodynamics and overpressure mechanisms in the Sacramento basin, California American Journal of Science 1999 299 6 429 466
Sayers C M Johnson G M Denyer G. Predrill pore-pressure prediction using seismic data Geophysics 2002 67 4 1286 1292
Soares A Nunes R Salvadoretti P . Pore pressure uncertainty characterization coupling machine learning and geostatistical modelling Mathematical Geosciences 2024 56 4 691 709
Swarbrick R. Review of pore-pressure prediction challenges in high-temperature areas The Leading Edge 2012 31 11 1288 1294
Wang Z Z Wang R H. Pore pressure prediction using geophysical methods in carbonate reservoirs: current status, challenges and way ahead Journal of Natural Gas Science and Engineering 2015 27 986 993
Wen J W Luo S W Zhao J L . The BEM algorithm: an EM method based on Bayesian Journal of Computer Research & Development 2001 38 7 821 825
Wu B Wang J Pan S L . Formation pressure prediction based on a closed velocity body by merging the high frequency velocity with the low frequency velocity Geophysical Prospecting for Petroleum 2017 56 4 575 580
Zhang B Fu L Y Wei W . Acoustic wave attenuation analysis of the abnormal geo-pressure and seismic extrapolation inversion of the formation pressure Chinese Journal of Geophysics 2014 57 10 3373 3388
Zhang D W Sun W Li S J . Prediction of shale gas preservation conditions by pre-stack geophysical technology: a case study of the shale gas reservoirs in the Jiaoshiba Block of the Sichuan Basin Natural Gas Industry 2020 40 6 42 49
Zhang J C. Pore pressure prediction from well logs: methods, modifications, and new approaches Earth-Science Reviews 2011 108 1-2 50 63
Zhang J L Zong Z Y Luo K. Estimation of pore pressure considering hydrocarbon generation pressurization using Bayesian inversion Interpretation 2023 11 2 T393 T405
Zong Z Y Yin X Y Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting Oil Geophysical Prospecting 2011 46 4 598 602 598-602, 604, 609
兴耀 祖庆 . 基于页岩岩石物理等效模型的地层压力系数预测方法 石油地球物理勘探 2022 57 02 367 376 367-376, 394
劲风 . 渤东低凸起南段地层压力预测方法研究 地球物理学进展 2024 39 2 788 799
丹鹭 劲风 . 渤中凹陷异常压力储层地层压力预测方法研究 地球物理学进展 2022 37 3 1266 1273
玉凤 巍巍 . 基于叠前反演的泥页岩地层压力预测方法 岩性油气藏 2019 31 1 113 121
正良 振涛 华锋 . 四川盆地WR区块页岩气藏孔隙压力分布特征 地球物理学进展 2021 36 5 2045 2052
尚华 . 非常规储层异常压力测井预测方法及应用 地球物理学进展 2023 38 2 700 708
津伟 四维 嘉莉 . 基于Bayesian的期望最大化方法——BEM算法 计算机研究与发展 2001 38 7 821 825
树林 . 基于高低频速度闭合技术的地层压力预测 石油物探 2017 56 4 575 580
力耘 . 异常地层压力声波衰减分析及地层压力地震数据外推反演 地球物理学报 2014 57 10 3373 3388
殿伟 双建 . 叠前地球物理技术预测页岩气保存条件——以四川盆地焦石坝构造页岩气藏为例 天然气工业 2020 40 6 42 49
兆云 兴耀 繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究 石油地球物理勘探 2011 46 4 598 602 598-602, 604, 609

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(3455 KB)

Accesses

Citation

Detail

Sections
Recommended

/