Automatic pick-up method of strata reflection information for tomography

Hao ZHENG, GuoFa LI, Kai GUO

Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1586-1596.

PDF(9028 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9028 KB)
Prog Geophy ›› 2024, Vol. 39 ›› Issue (4) : 1586-1596. DOI: 10.6038/pg2024II0037

Automatic pick-up method of strata reflection information for tomography

Author information +
History +

Abstract

The input data of reflection wave velocity tomography is the subsurface reflection information, which usually includes the reflection point of seismic section and the residual movement of common imaging gathers(CIGs). In the process, the key step is to pick intensively and automatically. To be specific, firstly structure tensor method is introduced to filter seismic data along structural features, so as to enhance the feature of the seismic section and the CIGs, improving the recognition of the reflection information. After that, the reflection information can be extracted more easily. In addition, based on the wavelet geometric feature of the seismic data and the spatial continuity of the seismic events, wave peak (trough) discrimination criteria can be established to pick the reflection points automatically, based on which the accurate reflection position picking results can be obtained. Finally, according to the reflection point pickup of seismic section, linear inversion method is introduced to calculate vertical shifts on each offset of the CIGs, which is used as the residual movement of the CIGs. The accuracy and effectiveness of this technique are verified by synthetics and field data.

Cite this article

Download Citations
Hao ZHENG , GuoFa LI , Kai GUO. Automatic pick-up method of strata reflection information for tomography[J]. Progress in Geophysics. 2024, 39(4): 1586-1596 https://doi.org/10.6038/pg2024II0037

References

Aki K , Lee W H K . Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical Research, 1976, 81(23): 4381 4399
Cai J X , Wang H Z , Chen J . Traveltime tomography in the image domain based on the Gaussian-beam-propagator. Chinese Journal of Geophysics, 2017, 60(9): 3539-3554
Feng B , Wu C L , Wang H Z . Velocity model building using reflection tomography. Geophysical Prospecting for Petroleum, 2019, 58(3): 371-380
Guan W S , Duan W S , Zha M . Low-relief structural imaging with model-based tomographic velocity inversion. Oil Geophysical Prospecting, 2017, 52(1): 87-93
Liu X , Che X J , Lin S Q . Seismic horizon extraction based on dip correction. Journal of Graphics, 2015, 36(3): 418-424
Liu X Y , Zhou W , Zhang B . An automatic tracking method for seismic horizons based on image theory. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1): 64-70
Peng W , Xiong X J , Han X J . Automatic tracing of horizons based on higher order statistics. Xinjiang Petroleum Geology, 2006, 27(6): 743-745
Toldi J L . Velocity analysis without picking. Geophysics, 1989, 54(2): 191-199
Vasco D W , Peterson J E , Majer E L . Beyond ray tomography: Wavepaths and Fresnel volumes. Geophysics, 1995, 60(6): 1790-1804
Wang H Z , Feng B , Wang X W . Analysis of seismic inversion imaging and its technical core issues. Geophysical Prospecting for Petroleum, 2015, 54(2): 115-125 115-125, 141
Wu X , Hale D . Horizon volumes with interpreted constraints. Geophysics, 2014, 80(2): IM21-IM33
Wu X M , Hale D . Horizon volumes with interpreted constraints. Geophysics, 2015, 80(2): IM21-IM33
Xu J L , Zhou D H , He D B . High-precision velocity tomography inversion in the depth domain. Oil Geophysical Prospecting, 2018, 53(4): 737-744
Zheng H , Cai J X , Wang J B . Gaussian beam tomography with structure-filtering and its applications. Geophysical and Geochemical Exploration, 2020, 44(2): 372-380
Zheng H , Liu J C , Wan C C . Fault-constrained velocity tomography in the depth domain. Geophysical Prospecting for Petroleum, 2021, 60(4): 556-564 556-564, 573
Zhu L H , Ma L W , Bai Y Z . Velocity modeling of an ultra-deep fault-controlled reservoir in Shunbei area, China, using a multi-information constraint. Geophysical Prospecting for Petroleum, 2019, 58(6): 864-873
杰雄 , 华忠 , . 基于高斯束传播算子的成像域走时层析成像方法. 地球物理学报, 2017, 60(9): 3539-3554
, 成梁 , 华忠 . 反射波层析反演速度建模方法. 石油物探, 2019, 58(3): 371-380
文胜 , 文胜 , . 利用基于模型的层析速度反演进行低幅度构造成像. 石油地球物理勘探, 2017, 52(1): 87-93
, 翔玖 , 森乔 . 基于倾角校正的地震层位追踪算法. 图学学报, 2015, 36(3): 418-424
旭跃 , , . 一种基于图像学的地震层位自动追踪方法. 物探化探计算技术, 2017, 39(1): 64-70
, 晓军 , 小俊 . 基于高阶统计量的层位自动追踪方法. 新疆石油地质, 2006, 27(6): 743-745
华忠 , , 雄文 . 地震波反演成像方法与技术核心问题分析. 石油物探, 2015, 54(2): 115-125 115-125, 141
嘉亮 , 东红 , 电波 . 高精度深度域层析速度反演方法. 石油地球物理勘探, 2018, 53(4): 737-744
, 杰雄 , 静波 . 基于构造导向滤波的高斯束层析速度建模方法及其应用. 物探与化探, 2020, 44(2): 372-380
, 俊辰 , 城程 . 基于断裂属性约束的深度域层析速度建模技术. 石油物探, 2021, 60(4): 556-564 556-564, 573
立华 , 灵伟 , 英哲 . 顺北超深断控体地震多信息约束速度建模. 石油物探, 2019, 58(6): 864-873

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2024 Progress in Geophysics. All rights reserved.
PDF(9028 KB)

Accesses

Citation

Detail

Sections
Recommended

/