Progress in geophysical exploration of supercritical geothermal resources

ZhaoFa ZENG, Shuai ZHOU, Jing LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 318-327.

PDF(2699 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(2699 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 318-327. DOI: 10.6038/pg2025GG0023

Progress in geophysical exploration of supercritical geothermal resources

Author information +
History +

Abstract

Supercritical geothermal can extract more than ten times the energy of conventional Enhanced Geothermal System (EGS), and become the development direction of new energy. Although China has become the country with the largest direct utilization of medium and low temperature geothermal resources, the level of exploration and development of deep underground high temperature geothermal resources needs to be improved. In this paper, we analyze the research progress of high temperature and high pressure physics experiment, numerical simulation, geophysical exploration and monitoring methods for supercritical geothermal, and the rock-fluid-gas geophysical properties of three-phase medium are summarized and analysis. And we give the typical high temperature geothermal area in China for supercritical geothermal resource exploration potential evaluation preliminary discussions, The potential exploration areas of deep supercritical geothermal resources based on geophysical survey results are predicted to provide support for the commercial utilization of supercritical geothermal resources in China.

Key words

Supercritical geothermal resources / Geophysical exploration / Rock geophysics / High temperature and high pressure / Research progress

Cite this article

Download Citations
ZhaoFa ZENG , Shuai ZHOU , Jing LI. Progress in geophysical exploration of supercritical geothermal resources[J]. Progress in Geophysics. 2025, 40(1): 318-327 https://doi.org/10.6038/pg2025GG0023

References

Agostinetti N , Licciardi A , Piccinini D , et al. Discovering geothermal supercritical fluids: a new frontier for seismic exploration. Scientific Reportsm, 2017,
Bai D H , Liao Z J , Zhao G Z , et al. The inference of magmatic heat source beneath the Rehai (Hot Sea) field of Tengchong from the result of magnetotelluric sounding. Chinese Science Bulletin, 1994, 39 (7): 572- 577.
Bando M , Bignall G , Sekine K , et al. Petrography and uplift history of the Quaternary Takidani Granodiorite: could it have hosted a supercritical (HDR) geothermal reservoir?. Journal of Volcanology and Geothermal Research, 2003, 120 (3-4): 215- 234.
Batini F, Bertini G, Bottai A, et al. 1983. San Pompeo 2 deep well: a high temperature and high pressure geothermal system. //Strub A, Ungemach P eds. European Geothermal Update-Proceedings of the 3rd International Seminar on the Results of EC Geothermal Energy Research.
Carcione J M , Poletto F . Seismic Rheological Model and Reflection Coefficients of the Brittle-Ductile Transition. Pure Applied Geophys, 2013, 170: 2021- 2035.
Carcione J M , Poletto F , Farina B , et al. Simulation of seismic waves at the earth's crust (brittle-ductile transition) based on the Burgers model. Solid Earth, 2014, 5 (2): 1001- 1010.
Carcione J M , Poletto F , Farina B , et al. The Gassmann-Burgers model to simulate seismic waves at the earth crust and mantle. Pure and Applied Geophysics, 2017, 174 (3): 849- 863.
Croucher A E , O'Sullivan M J . Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems. Geothermics, 2008, 37 (6): 622- 634.
De Simone S , Vilarrasa V , Carrera J , et al. Thermal coupling may control mechanical stability of geothermal reservoirs during cold water injection. Physics and Chemistry of the Earth, Parts A/B/C, 2013, 64: 117- 126.
Deichmann N , Giardini D . Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismological Research Letters, 2009, 80 (5): 784- 798.
Dobson P, Asanuma H, Huenges E, et al. 2017. Supercritical geothermal systems—a review of past studies and ongoing research activities. //Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering. Stanford.
Driesner T, Weis P, Scott S. 2015. A new generation of numerical simulation tools for studying the hydrology of geothermal systems to "supercritical" and magmatic conditions. //Proceedings World Geothermal Congress 2015. Melbourne, Australia.
Du J G , Liu C Q , Fu B H , et al. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China. Journal of Volcanology and Geothermal Research, 2005, 142 (3-4): 243- 261.
Duo J . The basic characteristics of the Yangbajing geothermal field-typical high temperature geothermal system. Engineering Science, 2003, 5 (1): 42- 47.
Elsworth D , Spiers C J , Niemeijer A R . Understanding induced seismicity. Science, 2016, 354 (6318): 1380- 1381.
Fan Q C , Sui J L , Wang T H , et al. History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province. Geological Journal of China Universities, 2007, 13 (2): 175- 190.
Fan X L , Chen Q F . Seismic constraints on the magmatic system beneath the Changbaishan volcano: insight into its origin and regional tectonics. Journal of Geophysical Research: Solid Earth, 2019, 124 (2): 2003- 2024.
Farina B, Poletto F, Carcione J. 2017. Seismic wave propagation in geothermal hot rocks: a review of simulation analysis and results based on Burgers models. //Proceedings of the 79th EAGE Conference and Exhibition 2017. Paris.
Flóvenz ó G, Spangenberg E, Kulenkampff J, et al. 2005. The role of electrical interface conduction in geothermal exploration. //Proceedings World Geothermal Congress 2005. Antalya, Turkey.
Frieleifsson G ó , Elders W A , Albertsson A . The concept of the Iceland deep drilling project. Geothermics, 2014, 49: 2- 8.
Fuji-Ta K , Katsura T , Ichiki M , et al. Variations in electrical conductivity of rocks above metamorphic conditions. Tectonophysics, 2011, 504 (1-4): 116- 121.
Giannelli G. 2008. Geothermal energy research trends. A Comparative Analysis of the Geothermal Fields of Larderello and MT Amiata, Italy, 59-85.
Glover P , Ross R G , Jolly H . The measurement of saturated rock electrical conductivity at lower crustal temperatures and high pressures. High Pressure Research, 1990, 5 (1-6): 705- 707.
Gunnarsson G , Aradóttir E S P . The deep roots of geothermal systems in volcanic areas: boundary conditions and heat sources in reservoir modeling. Transport in Porous Media, 2015, 108 (1): 43- 59.
Jiang C S , Zhou Z H , Zhou R Q . Evolution progress of tectonics in Tengchong volcano areas. Journal of Seismological Research, 2000, 23 (2): 188- 193.
Jin B L , Zhang X Y . The Changbai mountain Holocene epoch eruptive stages and its active features. Jilin Geology, 1994, 13 (2): 1- 12. 1-12, 56
Lin W J , Liu Z M , Ma F , et al. An estimation of HDR resources in China. Acta Geoscientica Sinica, 2012, 33 (5): 807- 811.
Magnusdottir L , Finsterle S . An iTOUGH2 equation-of-state module for modeling supercritical conditions in geothermal reservoirs. Geothermics, 2015, 57: 8- 17.
Millo. 1995. Geothermal resources development in China (Tibet) project, CPR/93/X01 2nd interim report, Geothermica Italianasrl Pisa.
Milsch H , Kristinsdóttir L H , Spangenberg E , et al. Effect of the water-steam phase transition on the electrical conductivity of porous rocks. Geothermics, 2010, 39 (1): 106- 114.
Moore J N , Simmons S F . More power from below. Science, 2013, 340 (6135): 933- 934.
O'Sullivan J, Kipyego E, Croucher A, et al. 2015. A supercritical model of the Menengai geothermal system. //Proceedings of the World Geothermal Congress 2015. Melbourne, Australia.
Parisio F , Vinciguerra S , Kolditz O , et al. The brittle-ductile transition in active volcanoes. Scientific Reports, 2019, 9 (1): 143
Park J G , Han W S , Han G , et al. Characterization of choked conditions under subsonic to supersonic flow in single-phase (supercritical to gaseous CO2 or liquid H2O) and multiphase (CO2 and H2O) transport. Journal of Geophysical Research: Solid Earth, 2019, 124 (4): 3570- 3587.
Poletto F, Corubolo P, Schleifer A, et al. 2011. Seismic while drilling for geophysical exploration in a geothermal well. //Proceedings of the Geothermal Resources Council Transactions. 1737-1741.
Qiu G G , Pei G G , Fang H , et al. Analysis of magma chamber at the Tianchi volcano area in Changbai mountain. Chinese Journal of Geophysics, 2014, 57 (10): 3466- 3477.
Ren S Y , Li B , Zhao G M , et al. Characteristics and application progress of supercritical fluids. Science and Technology, 2016, 26 (4): 178
Schimmel M T W , Hangx S J T , Spiers C J . Impact of chemical environment on compaction creep of quartz sand and possible geomechanical applications. Journal of Geophysical Research: Solid Earth, 2019, 124 (6): 5584- 5606.
Scott S , Driesner T , Weis P . Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications, 2015, 6 (1): 7837
Scott S , Driesner T , Weis P . The thermal structure and temporal evolution of high-enthalpy geothermal systems. Geothermics, 2016, 62: 33- 47.
Scott S , Driesner T , Weis P . Boiling and condensation of saline geothermal fluids above magmatic intrusions. Geophysical Research Letters, 2017, 44 (4): 1696- 1705.
Shangguan Z G , Gao S S , Liu G F . Observational method of total CO2 content dissolved in geothermal fluid. Earthquake, 1992, (5): 21- 28.
Tang J , Liu T S , Jiang Z , et al. Preliminary observations of the Tianchi volcano area in Changbaishan mountain by MT method. Seismology and Geology, 1997, 19 (2): 164- 170.
Tang J , Deng Q H , Zhao G Z , et al. Electric conductivity and magma chamber at the Tianchi volcano area in Changbaishan mountain. Seismology and Geology, 2001, 23 (2): 191- 200.
Terakawa T , Miller S A , Deichmann N . High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland. Journal of Geophysical Research: Solid Earth, 2012, 117 (B7): B07305
Vilarrasa V , Carrera J . Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (19): 5938- 5943.
Violay M , Heap M J , Acosta M , et al. Porosity evolution at the brittle-ductile transition in the continental crust: implications for deep hydro-geothermal circulation. Scientific Reports, 2017, 7 (1): 7705
Vlalovich M. 1982. Research on the Physical Properties of Rocks and Minerals Under High Temperature and High Pressure (in Chinese). Jiang F L, Yu Y S Trans. Beijing: Seismological Press.
Wang J Y , Hu S B , Pang Z H , et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review, 2012, 30 (32): 25- 31.
Watanabe N , Numakura T , Sakaguchi K , et al. Potentially exploitable supercritical geothermal resources in the ductile crust. Nature Geoscience, 2017, 10 (2): 140- 144.
Weis P , Driesner T . The interplay of non-static permeability and fluid flow as a possible pre-requisite for supercritical geothermal resources. Energy Procedia, 2013, 40: 102- 106.
Wu X P , Zhang B H , Xu J S , et al. Electrical conductivity measurements of periclase under high pressure and high temperature. Physica B: Condensed Matter, 2010, 405 (1): 53- 56.
Xiao C H , Wang Q F , Zhou X Z , et al. Rare-earth elements in hot spring waters in the Tengchong geothermal area. Acta Petrologica Sinica, 2010, 26 (6): 1938- 1944.
Xu T F , Zhang Y J , Zeng Z F , et al. Technology progress in an enhanced geothermal system (hot dry rock). Science & Technology Review, 2012, 30 (32): 42- 45.
Xu T F , Wang Y , Feng G H . Research progress and development prospect of deep supercritical geothermal resources. Natural Gas Industry, 2021, 41 (3): 155- 167.
Zhang J N. 2018. Experimental research on physical-mechanical properties and productivity evaluation of geothermal reservoir in Guide, Qinghai[Ph. D. thesis](in Chinese). Changchun: Jilin University.
Zhang N. 2012. Study on the phase characteristics of CO2 injection into condensate gas wells considering formation water and improving productivity[Master's thesis](in Chinese). Chengdu: Southwest Petroleum University.
Zhang T L , Wang Z L , Hu Y Z . Mineralogy of geyserite from the Tengchong active hot spring system and its geological implications. Acta Petrologica et Mineralogica, 1997, 16 (2): 170- 178.
. 典型高温地热系统——羊八井热田基本特征. 中国工程科学, 2003, 5 (1): 42- 47.
祺诚 , 建立 , 团华 , 等. 长白山火山活动历史、岩浆演化与喷发机制探讨. 高校地质学报, 2007, 13 (2): 175- 190.
朝松 , 真恒 , 瑞琦 . 腾冲火山区域构造演化过程. 地震研究, 2000, 23 (2): 188- 193.
伯录 , 希友 . 吉林省长白山全新世火山喷发期及火山活动特征. 吉林地质, 1994, 13 (2): 1- 12. 1-12, 56
文静 , 志明 , , 等. 我国陆区干热岩资源潜力估算. 地球学报, 2012, 33 (5): 807- 811.
M П. 伏拉罗维奇. 1982. 高温高压下岩石和矿物物理性质的研究. 蒋凤亮, 于允生译. 北京: 地震出版社.
根根 , 发根 , , 等. 长白山天池火山岩浆系统分析. 地球物理学报, 2014, 57 (10): 3466- 3477.
松宇 , , 光明 , 等. 超临界流体的特性及其应用进展. 科技展望, 2016, 26 (4): 178
上官 志冠 , 松升 , 桂芬 . 地热流体溶解二氧化碳总量观测方法. 地震, 1992, (5): 21- 28.
, 铁胜 , , 等. 长白山天池火山区大地电磁测深初步观测. 地震地质, 1997, 19 (2): 164- 170.
, 前辉 , 国泽 , 等. 长白山天池火山区电性结构和岩浆系统. 地震地质, 2001, 23 (2): 191- 200.
集旸 , 圣标 , 忠和 , 等. 中国大陆干热岩地热资源潜力评估. 科技导报, 2012, 30 (32): 25- 31.
昌浩 , 庆飞 , 兴志 , 等. 腾冲地热区高温热泉水中稀土元素特征. 岩石学报, 2010, 26 (6): 1938- 1944.
天福 , 延军 , 昭发 , 等. 增强型地热系统(干热岩)开发技术进展. 科技导报, 2012, 30 (32): 42- 45.
天福 , , 官宏 . 深部超临界地热资源研究进展及开发前景展望. 天然气工业, 2021, 41 (3): 155- 167.
张佳宁. 2018. 青海贵德地热田储层岩石物理力学性质试验及产能评价[博士论文]. 长春: 吉林大学.
张楠. 2012. 考虑地层水的凝析气井注CO2相态特征及提高产能研究[硕士论文]. 成都: 西南石油大学.
天乐 , 宗良 , 云中 . 腾冲现代热泉系统硅华的矿物学特征及其地质意义. 岩石矿物学杂志, 1997, 16 (2): 170- 178.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(2699 KB)

Accesses

Citation

Detail

Sections
Recommended

/