Research on the characteristics of fluid mobility of the tight reservoir with the NMR fluid distribution pore classification method

Peng LIU, Bin PENG, RuiJiang YU, Ting LI, Hui GAO, Teng LI

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 294-303.

PDF(5146 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5146 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 294-303. DOI: 10.6038/pg2025HH0266

Research on the characteristics of fluid mobility of the tight reservoir with the NMR fluid distribution pore classification method

Author information +
History +

Abstract

The Chang 8 tight sandstone reservoir is taken as the research object, and combining with the refined classification method of fluid distribution pore based on NMR fractal theory, the fluid motility of three different types of tight sandstone core samples were carried out to quantitatively characterize the fluid motility with the NMR tests. The experimental results show that the fluid motility of different types of cores is the result of the coupling of physical properties, lithological characteristics and microscopic pore inhomogeneity, and the fluid motility of larger pore sizes in cores significantly affects the fluid motility of cores; the fluid motility of different types of cores mainly occurs in P1-2 and P1-3 pores, and the amounts of these two types of pores and the amounts of their movable fluids determine the fluid motility of cores The pore structure coefficient and fluid motility coefficient have certain advantages in quantitative characterization of fluid motility, and the complexity of pore structure and fluid motility of P1-2 and P1-3 pores ultimately determine the fluid motility of cores.

Key words

Tight reservoir / Fluid mobility / Pore structure coefficient / Fluid mobility coefficient

Cite this article

Download Citations
Peng LIU , Bin PENG , RuiJiang YU , et al . Research on the characteristics of fluid mobility of the tight reservoir with the NMR fluid distribution pore classification method[J]. Progress in Geophysics. 2025, 40(1): 294-303 https://doi.org/10.6038/pg2025HH0266

References

Bai Y Y , Sun W , Ren D Z . Characteristics and controlling factors of movable fluid in low-permeability and tight sandstone reservoirs in Maling Oilfield. Fault-Block Oil and Gas Field, 2018, 25 (4): 455- 458.
Dai Q Q , Luo Q , Zhang C , et al. Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment: a case study of seventh Member in Yanchang Formation, Ordos Basin. Acta Petrolei Sinica, 2016, 37 (7): 887- 897.
Dang H L , Wang X F , Cui P X , et al. Research on the characteristics of spontaneous imbibition oil displacement with the low permeability tight-sandstone oil reservoir using the Nuclear Magnetic Resonance (NMR) technology. Progress in Geophysics, 2020, 35 (5): 1759- 1769.
Feng J , Zhang B W , Feng Z H , et al. Crude oil mobility and its controlling factors in tight sand reservoirs in northern Songliao Basin, China. Petroleum Exploration and Development, 2019, 46 (2): 312- 321.
Gao H , Sun W , Tian Y H , et al. Application of NMR technique in evaluation of micro-pore structure in extra-low permeability sandstone. Progress in Geophysics, 2011, 26 (1): 294- 299.
Hui W , Jia Y X , Cheng F , et al. Impact of microscopic pore structure on moveable fluid saturation in He8 reservoir of eastern Sulige Gasfield. Petroleum Geology and Recovery Efficiency, 2018, 25 (5): 10- 16.
Li L , Bao Z D , Li Z C , et al. Microscopic pore structure and fractal characteristics of tight sandstone gas reservoir: a case study of Denglouku Formation in Changling Gas Field, Songliao Basin. Natural Gas Geoscience, 2023, 34 (6): 1039- 1052.
Li M , Wang H , Chen M . Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs: a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30 (1): 140- 149.
Li S , Yang S L , Wang S , et al. Pore structure and fluid mobility characteristics of tight sedimentary tuff reservoir in Santanghu basin. Journal of Xi'an Shiyou University (Natural Science Edition), 2022, 37 (2): 45- 52.
Li T , Gao H , Ni J , et al. Research on the differential oil producing in the various scale pores under different CO2 flooding modes with a fluid distribution pore classification method. Energy & Fuels, 2023, 37 (5): 3775- 3784.
Li T , Gao H , Wang M Q , et al. Study on movability of spontaneous imbibition oil recovery from tight reservoirs based on nuclear magnetic resonance pore classification method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (3): 643- 655.
Liu X F , Dong X , Golsanami N , et al. NMR characterization of fluid mobility in tight sand: Analysis on the pore capillaries with the nine-grid model. Journal of Natural Gas Science and Engineering, 2021, 94: 104069
Pang Y D , Liu Y L , Zhang L , et al. Micro-pore structure and fluid mobility of tight sandstone reservoirs of Chang 8 Member in Huachi area in Ordos Basin. Petroleum Geology & Oilfield Development in Daqing, 2023, 42 (3): 1- 10.
Pu C S , Kang S F , Pu J Y , et al. Progress and development trend of water huff-n-puff technology for horizontal wells in tight oil reservoirs in China. Acta Petrolei Sinica, 2023, 44 (1): 188- 206.
Wang J C , Cui P X , Liu S S , et al. Distribution characteristics of movable fluid in shale oil reservoirs with different pore structures. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38 (1): 59- 68.
Wang J C , Yu Y , Lin L B , et al. Influencing factors of mobile fluid Saturationin the tight sandstone reservoir in the 4th member of Xujiahe Formation (T3x4), western Sichuan basin. Mineralogy and Petrology, 2023, 43 (2): 95- 107.
Wang X G , Zhang C , Zhang H , et al. Quantitative characterization method of movable fluid percentage in low permeability reservoirs of Weixinan sag. China Offshore Oil and Gas, 2020, 32 (6): 90- 98.
Wang X Z , Zhao X S , Dang H L , et al. Research on the characteristics of spontaneous imbibition and displacement of the tight reservoir with the NMR method. Progress in Geophysics, 2020, 35 (5): 1870- 1877.
Wang Y X , Xie B , Lai Q , et al. Evaluation of pore structure and classification in tight gas reservoir based on NMR logging. Progress in Geophysics, 2023, 38 (2): 759- 767.
Wu H K , Cao K , Zhao F F . NMR experimental study of movable fluid saturation in low permeability sedimentary rocks. Natural Gas Geoscience, 2021, 32 (3): 457- 463.
Wu M , Qin Y , Wang X Q , et al. Fluid mobility and its influencing factors of tight sandstone reservoirs in China. Journal of Jilin University (Earth Science Edition), 2021, 51 (1): 35- 51.
Wu S T , Li S X , Yuan X J , et al. Fluid mobility evaluation of tight sandstones in Chang 7 member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 2021, 32 (4): 850- 862.
Wu S T , Lin S Y , Chao D J , et al. Fluid mobility evaluation based on pore structure investigation in tight sandstones: case study of Upper Triassic Chang 6 tight sandstones in Huaqing area, Ordos Basin. Natural Gas Geoscience, 2019, 30 (8): 1222- 1232.
Xia Y L , Lan J P , Yao W . Micropore structure and movable fluid distribution characteristics of tight sandstone reservoirs: taking the He 8 reservoir in the Shenmu area of the eastern Ordos Basin as an example. Bulletin of Geological Science and Technology, 2024, 43 (2): 41- 51.
Xu Y Q , He Y H , Bu G P , et al. Establishment of classification and evaluation criteria for tight reservoirs based on characteristics of microscopic pore throat structure and percolation: a case study of Chang 7 reservoir in Longdong area, Ordos Basin. Petroleum Geology & Experiment, 2019, 41 (3): 451- 460.
Zheng Q H , Liu Y Q . Microscopic pore structure and movable fluid saturation of Ultra Low permeability reservoir. Geological Science and Technology Information, 2015, 34 (4): 124- 131.
Zhu W Y , Yue M , Liu Y F , et al. Research progress on tight oil exploration in China. Chinese Journal of Engineering, 2019, 41 (9): 1103- 1114.
云云 , , 大忠 . 马岭油田致密砂岩储层可动流体赋存特征及控制因素. 断块油气田, 2018, 25 (4): 455- 458.
全齐 , , , 等. 基于核磁共振新参数的致密油砂岩储层孔隙结构特征——以鄂尔多斯盆地延长组7段为例. 石油学报, 2016, 37 (7): 887- 897.
海龙 , 小锋 , 鹏兴 , 等. 基于核磁共振技术的低渗透致密砂岩油藏渗吸驱油特征研究. 地球物理学进展, 2020, 35 (5): 1759- 1769.
, 博为 , 子辉 , 等. 松辽盆地北部致密砂岩储集层原油可动性影响因素. 石油勘探与开发, 2019, 46 (2): 312- 321.
, , 育红 , 等. 核磁共振技术在特低渗砂岩微观孔隙结构评价中的应用. 地球物理学进展, 2011, 26 (1): 294- 299.
, 昱昕 , , 等. 苏里格气田东部盒8储层微观孔隙结构及可动流体饱和度影响因素. 油气地质与采收率, 2018, 25 (5): 10- 16.
, 志东 , 忠诚 , 等. 致密砂岩气储层微观孔隙结构与分形特征——以松辽盆地长岭气田登娄库组为例. 天然气地球科学, 2023, 34 (6): 1039- 1052.
, , . 致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30 (1): 140- 149.
, 胜来 , , 等. 三塘湖盆地致密沉凝灰岩储层孔隙结构及流体可动性特征. 西安石油大学学报(自然科学版), 2022, 37 (2): 45- 52.
, , 美强 , 等. 基于核磁共振孔隙划分的致密油藏自发渗吸原油可动性研究. 力学学报, 2023, 55 (3): 643- 655.
玉东 , 元良 , , 等. 鄂尔多斯盆地华池地区长8段致密砂岩储层微观孔隙结构及流体可动性. 大庆石油地质与开发, 2023, 42 (3): 1- 10.
春生 , 少飞 , 景阳 , 等. 中国致密油藏水平井注水吞吐技术进展与发展趋势. 石油学报, 2023, 44 (1): 188- 206.
新光 , , , 等. 涠西南凹陷低渗储层可动流体百分数定量表征方法. 中国海上油气, 2020, 32 (6): 90- 98.
继超 , 鹏兴 , 双双 , 等. 不同孔隙结构页岩油储层可动流体分布特征. 西安石油大学学报(自然科学版), 2023, 38 (1): 59- 68.
剑超 , , 良彪 , 等. 川西坳陷须家河组四段致密砂岩储层可动流体饱和度影响因素. 矿物岩石, 2023, 43 (2): 95- 107.
香增 , 习森 , 海龙 , 等. 基于核磁共振的致密油藏自发渗吸及驱替特征研究. 地球物理学进展, 2020, 35 (5): 1870- 1877.
跃祥 , , , 等. 基于核磁共振测井的致密气储层孔隙结构评价与分类. 地球物理学进展, 2023, 38 (2): 759- 767.
海科 , , 方方 . 低渗沉积岩可动流体饱和度核磁共振实验. 天然气地球科学, 2021, 32 (3): 457- 463.
, , 晓青 , 等. 中国致密砂岩储层流体可动性及其影响因素. 吉林大学学报(地球科学版), 2021, 51 (1): 35- 51.
松涛 , 士尧 , 代君 , 等. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例. 天然气地球科学, 2019, 30 (8): 1222- 1232.
玉磊 , 建平 , . 致密砂岩储层微观孔喉结构及可动流体分布特征: 以鄂尔多斯盆地东部神木地区盒8段储层为例. 地质科技通报, 2024, 43 (2): 41- 51.
永强 , 永宏 , 广平 , 等. 基于微观孔喉结构及渗流特征建立致密储层分类评价标准——以鄂尔多斯盆地陇东地区长7储层为例. 石油实验地质, 2019, 41 (3): 451- 460.
庆华 , 益群 . 特低渗透储层微观孔隙结构和可动流体饱和度特征. 地质科技情报, 2015, 34 (4): 124- 131.
维耀 , , 昀枫 , 等. 中国致密油藏开发理论研究进展. 工程科学学报, 2019, 41 (9): 1103- 1114.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5146 KB)

Accesses

Citation

Detail

Sections
Recommended

/