Seismic data regularization and interpolation approach based on compressive sensing principle

LieQian DONG, Heng ZHOU, YunYun SANG, QingQin ZENG, HongGuang FAN, YongQing TIAN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 276-284.

PDF(5790 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(5790 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 276-284. DOI: 10.6038/pg2025HH0428

Seismic data regularization and interpolation approach based on compressive sensing principle

Author information +
History +

Abstract

Seismic samples are typically designed on a perfect Cartesian grid. However, field constructions can disrupt the sampling geometry, resulting in the samples missing or off-the-grid. Our research goals are to simultaneously regularize off-the-grid samples and interpolate missing data for 3D seismic data under the framework of compressive sensing, which combines a 3D curvelet transform, a fast iterative threshold algorithm, and a merging sampling operator. The new sampling operator combines a binary mask with a barycentric Lagrangian operator for simultaneous interpolation and regularization. The fast iterative threshold algorithm is helpful to improve the interpolation accuracy and efficiency while solving the ill-posed problem. Finally, we demonstrate the effectiveness of the proposed approach by simulated and field datasets.

Key words

Compressive sensing / Merging sampling / Barycentric Lagrangian / Fast iterative threshold / Data regularization and interpolation

Cite this article

Download Citations
LieQian DONG , Heng ZHOU , YunYun SANG , et al . Seismic data regularization and interpolation approach based on compressive sensing principle[J]. Progress in Geophysics. 2025, 40(1): 276-284 https://doi.org/10.6038/pg2025HH0428

References

Abma R , Kabir N . 3D interpolation of irregular data with a POCS algorithm. Geophysics, 2006, 71 (6): E91- E97.
Beck A , Teboulle M . A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2 (1): 183- 202.
Berrut J P , Trefethen L N . Barycentric lagrange interpolation. SIAM Review, 2004, 46 (3): 501- 517.
Candès E J , Donoho D L . New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Communion Pure and Applied Mathematics, 2004, 57 (2): 219- 266.
Dong L Q , Zhang M G , Wang C H , et al. Reconstruction of non-uniformly sampled seismic data based on fast POCS algorithm. Oil Geophysical Prospecting, 2023, 58 (2): 334- 339.
Gong X B , Wang S C , Du L Z . Seismic data reconstruction using a sparsity-promoting apex shifted hyperbolic Radon-curvelet transform. Studia Geophysica et Geodaetica, 2018, 62 (3): 450- 465.
Hennenfent G , Herrmann F J . Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics, 2008, 73 (3): V19- V28.
Larner K , Gibson B , Rothman D . Trace interpolation and the design of seismic surveys. Geophysics, 1981, 46 (4): 407- 415.
Li C B, Mosher C C, Kaplan S T. 2012. Interpolated compressive sensing for seismic data reconstruction. //SEG Technical Program Expanded Abstracts 2012. SEG, 1 -6.
Li C B , Zhang Y . CSI: an efficient high-resolution seismic acquisition technology based on compressive sensing. Geophysical Prospecting for Petroleum, 2018, 57 (4): 537- 542.
Liu B , Sacchi M D . Minimum weighted norm interpolation of seismic records. Geophysics, 2004, 69 (6): 1560- 1568.
Liu G C , Chen X H , Guo Z F , et al. Missing seismic data rebuilding by interpolation based on Curvelet transform. Oil Geophysical Prospecting, 2011, 46 (2): 237- 246.
Naghizadeh M , Sacchi M D . Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data. Geophysics, 2010, 75 (6): WB189- WB202.
Spitz S . Seismic trace interpolation in the F-X domain. Geophysics, 1991, 56 (6): 785- 794.
Wang B , Zhang N , Lu W , et al. Deep-learning-based seismic data interpolation: a preliminary result. Geophysics, 2019, 84 (1): V11- V20.
Xu S , Zhang Y , Pham D , et al. Antileakage fourier transform for seismic data regularization. Geophysics, 2005, 70 (4): V87- V95.
Yi M L , Yan Y S , Wei X , et al. Using anti-alias trace interpolation in F-K domain. Geophysical Prospecting for Petroleum, 2001, 40 (2): 36- 41.
Yu G Q , Jia R S , Sun Y Y , et al. Reconstruction of seismic data based on over-complete dictionary learning. Progress in Geophysics, 2019, 34 (1): 229- 235.
Yu S W , Ma J W , Zhang X Q , et al. Interpolation and denoising of high-dimensional seismic data by learning a tight frame. Geophysics, 2015, 80 (5): V119- V132.
Zhang H , Yang X Y , Ma J W . Can learning from natural image denoising be used for seismic data interpolation?. Geophysics, 2020, WA115- WA136.
Zhang M G , Luo F , Wang C H , et al. Industrialization progress of wide-azimuth, broadband, and high-density (WBH) seismic acquisition technique. Natural Gas Industry, 2017, 37 (11): 1- 8.
Zheng H , Zhang B . Intelligent seismic data interpolation via convolutional neural network. Progress in Geophysics, 2020, 35 (2): 721- 727.
烈乾 , 慕刚 , 长辉 , 等. 应用快速POCS算法的非均匀地震数据重建. 石油地球物理勘探, 2023, 58 (2): 334- 339.
成博 , . CSI: 基于压缩感知的高精度高效率地震资料采集技术. 石油物探, 2018, 57 (4): 537- 542.
国昌 , 小宏 , 志峰 , 等. 基于Curvelet变换的缺失地震数据插值方法. 石油地球物理勘探, 2011, 46 (2): 237- 246.
明理 , 又生 , , 等. F-K域抗假频道内插. 石油物探, 2001, 40 (2): 36- 41.
国庆 , 瑞生 , 圆圆 , 等. 基于超完备字典学习的缺失地震数据重构方法. 地球物理学进展, 2019, 34 (1): 229- 235.
慕刚 , , 长辉 , 等. "两宽一高"地震采集技术工业化应用的进展. 天然气工业, 2017, 37 (11): 1- 8.
, . 基于卷积神经网络的智能化地震数据插值技术. 地球物理学进展, 2020, 35 (2): 721- 727.

感谢两位匿名审稿专家给予的宝贵修改建议,感谢哈尔滨工业大学于四伟教授对本文方法实现给与的建设性建议和帮助.

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(5790 KB)

Accesses

Citation

Detail

Sections
Recommended

/