Porosity-involved fluid factor construction method and application

YongZhen JI, ChaoYang LEI, Ming YAO, ShiMing DAI, ZeYu JIA

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 285-293.

PDF(9190 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9190 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 285-293. DOI: 10.6038/pg2025HH0431

Porosity-involved fluid factor construction method and application

Author information +
History +

Abstract

The carbonate reservoir of X structure in PuGuang gas field of Sichuan Basin has great potential for gas development and gas-bearing prediction technology plays a key role in the rolling development of the area. The lithology in the area is relatively stable but local feature of porosity changes rapidly. The gas-bearing indicators constructed by conventional methods are affected by changing porosity, resulting in insufficient indicating ability and poor consistency between prediction results and drilled wells. Through rock physics modeling and fluid substitute analysis, fluid indicator mixing between gas- and water-bearing reservoir is clarified; Combining the relevance between porosity and P- and S-wave impedance, a gas-bearing indicator construction method considering the influence of porosity was proposed. Based on prestack inversion and porosity inversion method, a gas prediction workflow of the study area is established and accurate prediction of gas-bearing reservoirs is achieved. The application results indicate that porosity-involved fluid factor can effectively suppress the influence of porosity during gas-bearing prediction, improve the prediction accuracy of gas-bearing reservoirs, and efficiently support exploration and development of the study area.

Key words

Porosity-involved fluid factor / Carbonate rock / Rock physics / Gas-bearing prediction

Cite this article

Download Citations
YongZhen JI , ChaoYang LEI , Ming YAO , et al . Porosity-involved fluid factor construction method and application[J]. Progress in Geophysics. 2025, 40(1): 285-293 https://doi.org/10.6038/pg2025HH0431

References

Batzle M L , Wang Z J . Seismic properties of pore fluids. Geophysics, 1992, 57 (11): 1396- 1408.
Cai S J , Li H B , Pan H J . Construction and application of porosity-insensitive normalized fluid factor based on rock physics template. Progress in Geophysics, 2020, 35 (3): 932- 939.
Cai X Y , Ma Y S , Li G X , et al. Characteristics of Lower Triassic Feixianguan Formation reservoir in Puguang gas field. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2005, 27 (1): 43- 45.
Dillon L , Schwedersky G , Vásquez G , et al. A multiscale DHI elastic attributes evaluation. The Leading Edge, 2003, 22 (10): 1024- 1029.
Goodway B, Chen T W, Downton J. 1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; "λρ", "μρ", &"λ/μ fluid stack", from P and S inversions. //Proceedings of SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists.
Hu H F , Yin X Y , Wu G C . Joint inversion of petrophysical parameters based on Bayesian classification. Geophysical Prospecting for Petroleum, 2012, 51 (3): 225- 232.
Ji Y Z , Zhu L H , Lin Z L , et al. Prestack simultaneous inversion based on automatic relevance determination. Geophysical Prospecting for Petroleum, 2020, 59 (4): 572- 582.
Jing P G . Reservoir prediction technology of reef-flat facies in northeast Sichuan province and its application. Geophysical Prospecting for Petroleum, 2007, 46 (4): 363- 369.
Li J D . "Sweet Spot" prediction of a tight sandstone gas reservoir in the N Block in Xihu Sag, China. Geophysical Prospecting for Petroleum, 2019, 58 (3): 444- 452.
Li Y , Qin D H . The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B Oilfield. Geophysical and Geochemical Exploration, 2018, 42 (4): 662- 667.
Liu R , Huo F , Wang X , et al. Characteristics and main controlling factors of Lower Triassic Feixianguan Formation carbonate reservoir in Puguang gas field. China Petroleum Exploration, 2017, 22 (6): 34- 46.
Ma S F , Han D K , Gan L D , et al. A review of seismic rock physics models. Progress in Geophysics, 2010, 25 (2): 460- 471.
Ma Y S , Fu Q , Guo T L , et al. Pool forming pattern and process of the upper Permian-lower Triassic, the Puguang gas field, northeast Sichuan basin, China. Petroleum Geology & Experiment, 2005, 27 (5): 455- 461.
Ning Z H , He Z H , Huang D J . High sensitive fluid identification based on seismic data. Geophysical Prospecting for Petroleum, 2006, 45 (3): 239- 241.
Pan B , Sen M K , Gu H M . Joint inversion of PP and PS AVAZ data to estimate the fluid indicator in HTI medium: a case study in Western Sichuan Basin, China. Journal of Geophysics and Engineering, 2016, 13 (5): 690- 703.
Pei F G , Zou C C , He T , et al. Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks. Applied Geophysics, 2010, 7 (1): 1- 9.
Russell B H , Hedlin K , Hilterman F J , et al. Fluid-property discrimination with AVO: a Biot-Gassmann perspective. Geophysics, 2003, 68 (1): 29- 39.
Wang D , Zhang Y M , Niu C , et al. The optimization of sensitive fluid factor removing the effect of porosity and its application to hydrocarbon detection. Geophysical and Geochemical Exploration, 2021, 45 (6): 1402- 1408.
Yin X Y , Liu X X . Research status and progress of the seismic rock-physics modeling methods. Geophysical Prospecting for Petroleum, 2016, 55 (3): 309- 325.
Yin X Y , Zhou Q C , Zong Z Y , et al. AVO inversion with t-distribution as priori constraint. Geophysical Prospecting for Petroleum, 2014, 53 (1): 84- 92.
Zhang D , Li P F , Li C , et al. Application of pre-stack simultaneous inversion to identify gas-bearing reservoirs in shale-developed areas. Progress in Geophysics, 2023, 38 (5): 2202- 2208.
Zhang F Q , Jin Z J , Sheng X J , et al. AVA sparse layer inversion with the soft-low frequency constraint. Oil Geophysical Prospecting, 2017, 52 (4): 770- 782.
生娟 , 宏兵 , 豪杰 . 基于岩石物理模板的孔隙度非敏感流体因子构建方法及应用. 地球物理学进展, 2020, 35 (3): 932- 939.
勋育 , 永生 , 国雄 , 等. 普光气田下三叠统飞仙关组储层特征. 石油天然气学报(江汉石油学院学报), 2005, 27 (1): 43- 45.
华锋 , 兴耀 , 国忱 . 基于贝叶斯分类的储层物性参数联合反演方法. 石油物探, 2012, 51 (3): 225- 232.
永祯 , 立华 , 正良 , 等. 基于自动相关判别先验的叠前同时反演方法研究. 石油物探, 2020, 59 (4): 572- 582.
朋贵 . 川东北地区礁滩相储层预测技术与应用. 石油物探, 2007, 46 (4): 363- 369.
久娣 . 东海西湖N区块致密砂岩气藏甜点预测研究. 石油物探, 2019, 58 (3): 444- 452.
, 德海 . 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用. 物探与化探, 2018, 42 (4): 662- 667.
, , , 等. 普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析. 中国石油勘探, 2017, 22 (6): 34- 46.
淑芳 , 大匡 , 利灯 , 等. 地震岩石物理模型综述. 地球物理学进展, 2010, 25 (2): 460- 471.
永生 , , 彤楼 , 等. 川东北地区普光气田长兴—飞仙关气藏成藏模式与成藏过程. 石油实验地质, 2005, 27 (5): 455- 461.
忠华 , 振华 , 德济 . 基于地震资料的高灵敏度流体识别因子. 石油物探, 2006, 45 (3): 239- 241.
, 益明 , , 等. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用. 物探与化探, 2021, 45 (6): 1402- 1408.
兴耀 , 琪超 , 兆云 , 等. 基于t分布为先验约束的叠前AVO反演. 石油物探, 2014, 53 (1): 84- 92.
兴耀 , 欣欣 . 储层地震岩石物理建模研究现状与进展. 石油物探, 2016, 55 (3): 309- 325.
, 鹏飞 , , 等. 叠前同时反演在泥页岩发育区识别含气储层的应用研究. 地球物理学进展, 2023, 38 (5): 2202- 2208.
丰麒 , 之钧 , 秀杰 , 等. 基于低频软约束的叠前AVA稀疏层反演. 石油地球物理勘探, 2017, 52 (4): 770- 782.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(9190 KB)

Accesses

Citation

Detail

Sections
Recommended

/