Research on rock physical modeling and "sweet spot" prediction methods for tight sandstone reservoirs

YuQing ZHOU, JiaJia ZHANG, GuangZhi ZHANG, Ying LIN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 255-265.

PDF(8137 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(8137 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 255-265. DOI: 10.6038/pg2025HH0436

Research on rock physical modeling and "sweet spot" prediction methods for tight sandstone reservoirs

Author information +
History +

Abstract

In recent years, the production of tight sandstone gas in China has been rising, how to analyze the internal "sweet spot" of tight sandstone reservoir based on the characteristics of low porosity and low permeability has become a key issue. In this paper, the petrophysical model of tight sandstone is established by analyzing the petrophysical characteristics of tight sandstone and aggregating the pore structure connectivity of tight sandstone. Then, combined with the characteristics of the actual work area, the geophysical "sweet spot" are divided according to the porosity, P-wave impedance and other parameters. The sensitive parameters of "sweet spot" of tight sandstone reservoir, such as the ratio of bulk modulus to shear modulus(K/μ) and the ratio of P-wave velocity to S-wave velocity, are obtained, which lay a foundation for subsequent pre-stack seismic inversion for "sweet spot". Finally, the reflection coefficient equation applicable to the sensitive parameters of tight sandstone "sweet spot" is derived based on the elastic impedance inversion, and the quantitative prediction of class Ⅰ sweet spot to class Ⅱ sweet spot (coarse-grained rock facies) is realized according to the P-wave modulus and the sensitive parameters of "sweet spot", which effectively indicates the gas-bearing reservoir area and provides a reference for the evaluation and development of low permeability tight sandstone reservoir.

Key words

Tight sandstone / Sweet spot / Rock physics model / Elastic impedance inversion

Cite this article

Download Citations
YuQing ZHOU , JiaJia ZHANG , GuangZhi ZHANG , et al. Research on rock physical modeling and "sweet spot" prediction methods for tight sandstone reservoirs[J]. Progress in Geophysics. 2025, 40(1): 255-265 https://doi.org/10.6038/pg2025HH0436

References

Aki K , Richards P G . Quantitative Seismology: Theory and Methods. San Francisco: WH Freeman & Co, 1980,
Avseth P , Johansen T A , Bakhorji A , et al. Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones. Geophysics, 2014, 79 (2): D115- D121.
Chen K , Di G D , Zhang J J , et al. Reservoir prediction based on improved U-net convolutional neural network. CT Theory and Applications, 2021, 30 (4): 403- 416.
Connolly P . Elastic impedance. The Leading Edge, 1999, 18 (4): 438- 452.
Du J , Zhu G H , Li Y , et al. Exploration and development challenges and technological countermeasures for tight sandstone gas reservoirs in Ordos basin margin: A case study of Linxing-Shenfu Gas Field. Natural Gas Industry, 2022, 42 (1): 114- 124.
Feng G , Zeng H H , Xu X R , et al. Shear wave velocity prediction based on deep neural network and theoretical rock physics modeling. Frontiers in Earth Science, 2023, 10: 1025635.
Grana D , Mukerji T , Dvorkin J , et al. Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method. Geophysics, 2012, 77 (4): M53- M72.
He X K , Lou M , Tu Q C , et al. Sweet spot prediction in thick gas reservoirs with low permeability in Huagang Formation of Z gasfield in Xihu Sag, East China Sea Shelf Basin. Oil Geophysical Prospecting, 2023, 58 (6): 1410- 1422.
Jia A L , Wei Y S , Guo Z , et al. Development status and prospect of tight sandstone gas in China. Natural Gas Industry, 2022, 42 (1): 83- 92.
Lang X Z , Grana D . Bayesian linearized petrophysical AVO inversion. Geophysics, 2018, 83 (3): M1- M13.
Law B E . Basin-centered gas systems. AAPG Bulletin, 2002, 86 (11): 1891- 1919.
Li B Y , Zhang J J , Tu Q C , et al. A method for directly inverting low permeability "Sweet spot" by using elastic impedance equation. CT Theory and Applications, 2019, 28 (4): 407- 416.
Li H B , Zhang J J , Pan H J , et al. Nonlinear simultaneous inversion of pore structure and physical parameters based on elastic impedance. Science China Earth Sciences, 2021, 64 (6): 977- 991.
Li K , Yin X Y , Zong Z Y . Petrophysically-driven probabilistic inversion method for phase-constrained prestack earthquakes. Science in China: Earth Sciences, 2020, 50 (6): 832- 850.
Li X Y , Qin R B , Cao J J , et al. Method of connected porosity evaluation and quantitative permeability calculation for complex reservoirs. Oil Geophysical Prospecting, 2022, 57 (2): 377- 385.
Popov M A , Nuccio V F , Dyman T S , et al. Basin-centered gas systems of the U.S.. U.S. Geological Survey, 2001,
Ruiz F , Cheng A . A rock physics model for tight gas sand. The Leading Edge, 2010, 29 (12): 1484- 1489.
Smith T M , Sayers C M , Sondergeld C H . Rock properties in low-porosity/low-permeability sandstones. The Leading Edge, 2009, 28 (1): 48- 59.
Tutuncu A N , Podio A L , Sharma M M . An experimental investigation of factors influencing compressional-and shear-wave velocities and attenuations in tight gas sandstones. Geophysics, 1994, 59 (1): 77- 86.
Wang B L , Yin X Y , Zhang F C . Lamé parameters inversion based on elastic impedance and its application. Applied Geophysics, 2006, 3 (3): 174- 178.
Wei X , Yang Z F , Yan X F , et al. Modified continuous random patchy-saturation model in tight gas detection. Oil Geophysical Prospecting, 2018, 53 (6): 1227- 1234.
Yang S Y , Zhang J C , Huang W D , et al. "Sweet spot" types of reservoirs and genesis of tight sandstone gas in Kekeya area, Turpan-Hami Basin. Acta Petrolei Sinica, 2013, 34 (2): 272- 282.
Yin X Y , Cao D P , Wang B L , et al. Research progress of fluid discrimination with pre-stack seismic inversion. Oil Geophysical Prospecting, 2014, 49 (1): 22- 34. 22-34, 46
Zhao C. 2017. The study of the sweet spot identification method based on stochastic inversion[Master's thesis] (in Chinese). Qingdao: China University of Petroleum (East China).
Zhao J L , Liu J J , Zhang Q H , et al. Overview of geophysical exploration methods and technical of tight sandstone gas reservoirs. Progress in Geophysics, 2017, 32 (2): 840- 848.
Zhao J Z . Conception, classification and resource potential of unconventional hydrocarbons. Natural Gas Geoscience, 2012, 23 (3): 393- 406.
Zhao Z X , Dong C M , Lin C Y , et al. Classification and origin of "sweet spots" in deep low permeability tight gas reservoirs, Xihu Sag, East China Sea Shelf Basin. Oil & Gas Geology, 2018, 39 (4): 778- 790.
Zhu H Y , Gong D , Zhang B . A multi-scale geology-engineering sweet spot evaluation method for tight sandstone gas reservoirs. Natural Gas Industry, 2023, 43 (6): 76- 86.
Zong Z Y , Yin X Y , Wu G C . Elastic impedance variation with angle inversion for elastic parameters. Journal of Geophysics and Engineering, 2012, 9 (3): 247- 260.
Zou C N , Zhang G S , Yang Z , et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology. Petroleum Exploration and Development, 2013, 40 (4): 385- 399. 385-399, 454
, 贵东 , 佳佳 , 等. 基于改进U-Net卷积神经网络的储层预测. CT理论与应用研究, 2021, 30 (4): 403- 416.
, 光辉 , , 等. 鄂尔多斯盆缘致密砂岩气藏勘探开发挑战与技术对策——以临兴—神府气田为例. 天然气工业, 2022, 42 (1): 114- 124.
贤科 , , 齐催 , 等. 厚层低渗气藏"甜点"预测——以东海陆架盆地西湖凹陷Z气田花港组为例. 石油地球物理勘探, 2023, 58 (6): 1410- 1422.
爱林 , 云生 , , 等. 中国致密砂岩气开发现状与前景展望. 天然气工业, 2022, 42 (1): 83- 92.
炳颖 , 佳佳 , 齐催 , 等. 一种利用弹性阻抗方程直接反演低渗"甜点"的方法. CT理论与应用研究, 2019, 28 (4): 407- 416.
红兵 , 佳佳 , 豪杰 , 等. 基于弹性阻抗的孔隙结构与物性参数非线性同步反演. 中国科学: 地球科学, 2021, 51 (7): 1166- 1180.
, 兴耀 , 兆云 . 岩石物理驱动的相约束叠前地震概率化反演方法. 中国科学: 地球科学, 2020, 50 (6): 832- 850.
雄炎 , 瑞宝 , 景记 , 等. 复杂储层连通孔隙度评价与渗透率定量计算方法. 石油地球物理勘探, 2022, 57 (2): 377- 385. 377-385, 245
, 志芳 , 信飞 , 等. 改进型随机斑块饱和模型及其在致密气层检测中的应用. 石油地球物理勘探, 2018, 53 (6): 1227- 1234.
升宇 , 金川 , 卫东 , 等. 吐哈盆地柯柯亚地区致密砂岩气储层"甜点" 类型及成因. 石油学报, 2013, 34 (2): 272- 282.
兴耀 , 丹平 , 保丽 , 等. 基于叠前地震反演的流体识别方法研究进展. 石油地球物理勘探, 2014, 49 (1): 22- 34. 22-34, 46
赵晨. 2017. 基于随机反演的储层"甜点"识别方法研究[硕士论文]. 青岛: 中国石油大学(华东).
军龙 , 建建 , 庆辉 , 等. 致密砂岩气藏地球物理勘探方法技术综述. 地球物理学进展, 2017, 32 (2): 840- 848.
靖舟 . 非常规油气有关概念、分类及资源潜力. 天然气地球科学, 2012, 23 (3): 393- 406.
仲祥 , 春梅 , 承焰 , 等. 西湖凹陷深层低渗-致密气藏"甜点"类型划分及成因探讨. 石油与天然气地质, 2018, 39 (4): 778- 790.
海燕 , , . 致密砂岩气储层多尺度"地质—工程"双"甜点"评价新方法. 天然气工业, 2023, 43 (6): 76- 86.
才能 , 国生 , , 等. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学. 石油勘探与开发, 2013, 40 (4): 385- 399. 385-399, 454

感谢Geosoftware提供软件支持.

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(8137 KB)

Accesses

Citation

Detail

Sections
Recommended

/