Identification of mud shale lithofacies: taking Yanchang Formation in Yan'an area as an example

WeiWei ZHAO, Hui LI, YuChen LIU, ZhuoYuan SHEN, JianBo GAO, ZhiPeng HUO, JiaQi ZHANG, JiaNan WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 719-731.

PDF(9934 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(9934 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (2) : 719-731. DOI: 10.6038/pg2025HH0454

Identification of mud shale lithofacies: taking Yanchang Formation in Yan'an area as an example

Author information +
History +

Abstract

Ordos Basin's Chang 7 Member of Yanchang Formation, as a typical continental shale oil and gas reservoir, exhibits widespread development of mud shale characterized by low calcium mineral content and high content of siliceous and clay minerals. In this study, lithofacies types were classified based on conventional well log curves, whole rock mineral analysis, and organic matter content. A total of 4 one-level lithofacies and 16 two-level lithofacies were identified. Specifically, understanding of the mud shale lithofacies in the Chang 7 Member was enhanced, revealing three main lithofacies: calcium clay siliceous shale, calcium-containing siliceous/clay mixed shale, and calcium-containing siliceous clay shale. Due to the high cost and low popularity of experiments such as whole rock mineral determination, this study employed a multilayer perceptron neural network to establish a connection between conventional well log curves and whole rock mineral content to predict the whole rock mineral content in the study area. Meanwhile, cluster analysis and discriminant analysis were used to autonomously classify lithofacies types in the study area. The results indicate that the combination model of multilayer perceptron neural network and Bayesian discriminant analysis has a high predictive accuracy for lithofacies, reaching 89.9%, making it a major method for lithofacies prediction.

Key words

Mud shale lithofacies / Lithofacies identification / Multilayer perceptron neural network / Clustering analysis / Discriminant analysis

Cite this article

Download Citations
WeiWei ZHAO , Hui LI , YuChen LIU , et al . Identification of mud shale lithofacies: taking Yanchang Formation in Yan'an area as an example[J]. Progress in Geophysics. 2025, 40(2): 719-731 https://doi.org/10.6038/pg2025HH0454

References

Cao Y M , Zhou H , Yu B , et al. Seismic-petrophysical inversion based on linear Bayesian theory and modified canonical correlation analysis. Chinese Journal of Geophysics, 2024, 67 (1): 332- 346.
Ding Y Y , Zhao J L , Li Z M , et al. Research on logging recognition technology of coal structure based on XGBoost algorithm. Progress in Geophysics, 2022, 37 (3): 998- 1006.
Er C , Luo A X , Zhao J Z , et al. Lithofacies features of organic-rich shale of the Triassic Yanchang Formation in Huachi Aera, Ordos Basin. Earth Science Frontiers, 2016, 23 (2): 108- 117.
Er C , Zhao J Z , Wang R , et al. Controlling role of sedimentary environment on the distribution of organic-rich shale: a case study of the Chang7 member of the Triassic Yanchang Formation, Ordos Basin. Natural Gas Geosciences, 2015, 26 (5): 823- 832. 823-832, 892
Fu J H , Deng X Q , Chu M J , et al. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance. Acta Sedimentologica Sinica, 2013, 31 (5): 928- 938.
Fu J H , Li S X , Niu X B , et al. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration & Development, 2020, 47 (5): 870- 883.
Grana D , Rossa E D . Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 2010, 75 (3): O21- O37.
Guo X H , Xu F H , Huang X B , et al. Oil-source correlation based on multivariate statistical analysis: a case study of the Bodong Sag, Bohai Bay Basin. Oil & Gas Geology, 2022, 43 (5): 1259- 1270.
He J H , Ding W L , Jiang Z X , et al. Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, eastern China. Journal of Petroleum Science and Engineering, 2016, 145: 238- 255.
Jiang S Y , Sun P K , Zhang L , et al. Intelligent identification and characterization of complex lithofacies based on radial basis-multilayer perception neural network joint model. Natural Gas Industry, 2022, 42 (9): 47- 62.
Jiang Y Q , Song Y T , Qi L , et al. Fine lithofacies of China's marine shale and its logging prediction: a case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China. Earth Science Frontiers, 2016, 23 (1): 107- 118.
Jin X , Li G X , Meng S W , et al. Microscale comprehensive evaluation of continental shale oil recoverability. Petroleum Exploration and Development, 2021, 48 (1): 222- 232.
Li G X , Liu G Q , Hou Y T , et al. Optimization method of favorable lithofacies and fracturing parameter for continental shale oil. Acta Petrolei Sinica, 2021, 42 (11): 1405- 1416.
Li N , Yan W L , Wu H L , et al. Current situation, problems and countermeasures of the well-logging evaluation technology for Gulong shale oil. Petroleum Geology & Oilfield Development in Daqing, 2020, 39 (3): 117- 128.
Li P , Sun W , Li C Z . Diagenetic facies characteristics of Chang 63 reservoir in Huaqing Oilfield, Ordos Basin. Xinjiang Petroleum Geology, 2018, 39 (5): 517- 523.
Lin T , Zhao C . Nearest neighbor optimization k-means clustering algorithm. Computer Science, 2019, 46 (11A): 216- 219.
Liu F , Zhu X M , Liang J S , et al. Lithofacies characteristics of gravity flow deposits and their impacts on reservoir quality in the Yanchang Formation, Ordos Basin. Marine Geology Frontiers, 2020, 36 (6): 46- 55.
Liu X Y , Chen X H , Li J Y , et al. Reservoir physical property prediction based on kernel-Bayes discriminant method. Acta Petrolei Sinica, 2016, 37 (7): 878- 886.
Peng S Z , Liu D X , Zhang L F , et al. Shale Lithofacies and sedimentary facies of the Permian Shanxi Formation, Daning-Jixian area, eastern Margin of Ordos Basin. Acta Sedimentologica Sinica, 2022, 40 (1): 47- 59.
Tian M Z , Zhu C , Li S M , et al. Application of logging lithofacies identification technology of lacustrine carbonate rocks: a case study of Yingxi area, Qaidam Basin. China Petroleum Exploration, 2023, 28 (1): 135- 143.
Wang M , Liu Z J , Yang Y Q , et al. Permeability calculation in reservoir flow unit based on regional logging big data and experimental data. Progress in Geophysics, 2021, 36 (1): 274- 280.
Wu J , Wang H Y , Shi Z S , et al. Favorable lithofacies types and genesis of marine-continental transitional black shale: a case study of Permian Shanxi Formation in the eastern margin of Ordos Basin, NW China. Petroleum Exploration & Development, 2021, 48 (6): 1137- 1149.
Zhang B , Zhang F Q , Zhuo Q G , et al. Distribution prediction of tectonic fractures in the upper member of Xiaganchaigou Formation in Yingxi area, Qaidam Basin. Progress in Geophysics, 2022, 37 (2): 709- 720.
Zhang C , Zhang L Q , Chen J L , et al. Lithofacies types and discrimination of Paleogene fine-grained sedimentary rocks in the Dongying Sag, Bohai Bay Basin, China. Natural Gas Geoscience, 2017, 28 (5): 713- 723.
亚梅 , , , 等. 基于线性贝叶斯和改进的典型相关分析法的地震岩石物理反演. 地球物理学报, 2024, 67 (1): 332- 346.
阳阳 , 军龙 , 兆明 , 等. 基于XGBoost算法的煤体结构测井识别技术研究. 地球物理学进展, 2022, 37 (3): 998- 1006.
, 靖舟 , , 等. 沉积环境对富有机质页岩分布的控制作用——以鄂尔多斯盆地三叠系延长组长7油层组为例. 天然气地球科学, 2015, 26 (5): 823- 832. 823-832, 892
, 安湘 , 靖舟 , 等. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征. 地学前缘, 2016, 23 (2): 108- 117.
金华 , 秀芹 , 美娟 , 等. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. 沉积学报, 2013, 31 (5): 928- 938.
金华 , 士祥 , 小兵 , 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践. 石油勘探与开发, 2020, 47 (5): 870- 883.
喜浩 , 昉昊 , 晓波 , 等. 基于多元统计分析的油-源对比——以渤海湾盆地渤东凹陷为例. 石油与天然气地质, 2022, 43 (5): 1259- 1270.
世一 , 盼科 , , 等. 基于径向基—多层感知器神经网络联合的复杂岩相智能识别与表征. 天然气工业, 2022, 42 (9): 47- 62.
裕强 , 益滔 , , 等. 中国海相页岩岩相精细划分及测井预测: 以四川盆地南部威远地区龙马溪组为例. 地学前缘, 2016, 23 (1): 107- 118.
, 国欣 , 思炜 , 等. 陆相页岩油可动用性微观综合评价. 石油勘探与开发, 2021, 48 (1): 222- 232.
国欣 , 国强 , 雨庭 , 等. 陆相页岩油有利岩相优选与压裂参数优化方法. 石油学报, 2021, 42 (11): 1405- 1416.
, 伟林 , 宏亮 , 等. 松辽盆地古龙页岩油测井评价技术现状、问题及对策. 大庆石油地质与开发, 2020, 39 (3): 117- 128.
, , 长政 . 鄂尔多斯盆地华庆油田长63储集层成岩相特征. 新疆石油地质, 2018, 39 (5): 517- 523.
, . 最近邻优化的k-means聚类算法. 计算机科学, 2019, 46 (11A): 216- 219.
, 筱敏 , 建设 , 等. 鄂尔多斯盆地延长组深水重力流岩相发育特征及其储集性. 海洋地质前沿, 2020, 36 (6): 46- 55.
兴业 , 小宏 , 景叶 , 等. 基于核贝叶斯判别法的储层物性参数预测. 石油学报, 2016, 37 (7): 878- 886.
思钟 , 德勋 , 磊夫 , 等. 鄂尔多斯盆地东缘大宁—吉县地区山西组页岩岩相与沉积相特征. 沉积学报, 2022, 40 (1): 47- 59.
明智 , , 森明 , 等. 湖相碳酸盐岩测井岩相识别技术与应用——以柴达木盆地英西地区为例. 中国石油勘探, 2023, 28 (1): 135- 143.
, 志杰 , 玉卿 , 等. 基于区域测井大数据和实验资料的储层流动单元渗透率建模方法. 地球物理学进展, 2021, 36 (1): 274- 280.
, 红岩 , 振生 , 等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例. 石油勘探与开发, 2021, 48 (6): 1137- 1149.
, 凤奇 , 勤功 , 等. 柴达木盆地英西地区下干柴沟组上段构造裂缝的分布预测. 地球物理学进展, 2022, 37 (2): 709- 720.
, 立强 , 家乐 , 等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别. 天然气地球科学, 2017, 28 (5): 713- 723.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(9934 KB)

Accesses

Citation

Detail

Sections
Recommended

/