Seismic first break picking using dual-channel mask interaction

Xu ZHANG, Jian ZHANG, CuiCui SHI, Fei DENG, ZhengCai FAN

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 131-142.

PDF(11313 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(11313 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 131-142. DOI: 10.6038/pg2025HH0475

Seismic first break picking using dual-channel mask interaction

Author information +
History +

Abstract

Deep learning applied to seismic First Break (FB) picking has been developed for many years, and numerous researchers have used Image Semantic Segmentation Networks (ISSNs) for multi-channel FB picking. The existing seismic FB picking method based on ISSNs usually adopts two label calibration and FB determination methods, one is to divide the seismic signal into pre-FB and post-FB, and pick up the FB through mask segmentation; the other is to divide the seismic signal into FB and non-FB, and pick up the FB by extracting the highest confidence point of each trace. The former suffers from FB false pickup with localized regional continuity due to the mask edge blurring problem; The latter, because of the large proportion of positive and negative samples, tends to make the network hard fitting and cannot be applied to data with complex FB waveforms and large size. Based on this, a dual-channel mask interaction seismic FBs picking method is proposed, which ensures the network's FBs feature recognition ability by banded FBs range mask, and enhances the network's FBs accurate picking ability by linear preferred FBs mask, which effectively avoids the shortcomings of the existing methods. Theoretical experiments show that the method has good noise resistance and can be generalized to higher noise level data by training in low noise level data. When the method is applied to the field data, it achieves higher FB picking accuracy than the existing methods, and the number of traces with picking error of 0 ms is as high as 75.9%, which is 7.1%, 26.8%, and 15.6% higher than that of STUNet, SegNet, and Res-Unet, respectively, and greatly improves the efficiency of high-quality seismic FB picking. Meanwhile, the approach adopts a lightweight network model with high inference efficiency and easy engineering deployment, which has practical application value.

Key words

Deep learning / First break picking / Image semantic segmentation / Dual-channel mask / Lightweight

Cite this article

Download Citations
Xu ZHANG , Jian ZHANG , CuiCui SHI , et al . Seismic first break picking using dual-channel mask interaction[J]. Progress in Geophysics. 2025, 40(1): 131-142 https://doi.org/10.6038/pg2025HH0475

References

Boschetti F , Dentith M D , List R D . A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics, 1996, 61 (4): 1095- 1102.
Chen D W , Yang W Y , Wei X J , et al. Automatic picking of seismic first arrivals based on hybrid network U-SegNet. Oil Geophysical Prospecting, 2020, 55 (6): 1188- 1201.
Chen D W , Yang W Y , Wei X J , et al. Research on first-break automatic picking based on an improved U-Net network. Progress in Geophysics, 2021, 36 (4): 1493- 1503.
Coppens F . First arrival picking on common-offset trace collections for automatic estimation of static corrections. Geophysical Prospecting, 1985, 33 (8): 1212- 1231.
Deng F , Jiang P F , Jiang X Y , et al. Microseismic event recognition and first break picking method based on image semantic segmentation network. Oil Geophysical Prospecting, 2022, 57 (5): 1011- 1019.
Gelchinsky B , Shtivelman V . Automatic picking of first arrivals and parameterization of traveltime curves. Geophysical Prospecting, 1983, 31 (6): 915- 928.
Hu L L , Zheng X D , Duan Y T , et al. First-arrival picking with a U-Net convolutional network. Geophysics, 2019, 84 (6): U45- U57.
Jiang P F , Deng F , Wang X B , et al. Seismic first break picking through Swin transformer feature extraction. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 7501505
Jiang P F , Deng F , Yan X . Microseismic first break picking based on Swin Transformer feature extraction. Progress in Geophysics, 2023, 38 (3): 1132- 1142.
Jiao L X , Moon W M . Detection of seismic refraction signals using a variance fractal dimension technique. Geophysics, 2000, 65 (1): 286- 292.
Li H F , Zou Q , Jin W Y . Method of automatic first breaks pick-up based on edge detection. Oil Geophysical Prospecting, 2006, 41 (2): 150- 155. 150-155, 159
Li J P , Zhang S W , Ding R W , et al. Research on depth residual method of super-resolution for intelligent seismic wave first arrival pickup. Oil Geophysical Prospecting, 2023, 58 (2): 251- 262.
Li W W , Gong R B , Zhou X G , et al. UNet++: a deep-neural-network-based seismic arrival time picking method. Progress in Geophysics, 2021, 36 (1): 187- 194.
Liu Z G , Liu X F . TSP application and development in tunnel lead forecast. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (8): 1399- 1402.
Loginov G N , Duchkov A A , Litvichenko D A , et al. Convolution neural network application for first-break picking for land seismic data. Geophysical Prospecting, 2022, 70 (7): 1093- 1115.
Malehmir A , Durrheim R , Bellefleur G , et al. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics, 2012, 77 (5): WC173- WC190.
Pan S L , Gao L , Zou Q , et al. An automatic method to pick up the first break time. Geophysical Prospecting for Petroleum, 2005, 44 (2): 163- 166.
Pan Y J , Xu Y P , Ni Y D , et al. First break picking method based on deep learning semantic segmentation of seismic image. Progress in Geophysics, 2022, 37 (3): 1122- 1131.
Peraldi R , Clement A . Digital processing of refraction data study of first arrivals. Geophysical Prospecting, 1972, 20 (3): 529- 548.
Ruby U , Yendapalli V . Binary cross entropy with deep learning technique for image classification. Int. J. Adv. Trends Comput. Sci. Eng., 2020, 9 (4): 5393- 5397.
Wu H , Zhang B , Li F Y , et al. Semiautomatic first-arrival picking of microseismic events by using the pixel-wise convolutional image segmentation method. Geophysics, 2019, 84 (3): V143- V155.
Xu Y P , Yin C , Pan Y J , et al. First-break automatic picking technology based on semantic segmentation. Geophysical Prospecting, 2021, 69 (6): 1181- 1207.
Yilmaz Ö . Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Tulsa: Society of Exploration Geophysicists, 2001
Yuan L S . Research on seismic first break picking under complex geological conditions based on depth learning. Progress in Geophysics, 2022, 37 (4): 1657- 1668.
Yuan S Y , Zhao Y , Xie T , et al. SegNet-based first-break picking via seismic waveform classification directly from shot gathers with sparsely distributed traces. Petroleum Science, 2022, 19 (1): 162- 179.
Zhu L G, Kang H, Lv M Z, et al. 2022. Lyken17/pytorch-OpCounter. https://github.com/Lyken17/pytorch-OpCounter.
Zhu W , Beroza G C . PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 2019, 216 (1): 261- 273.
Zwartjes P , Yoo J . First break picking with deep learning-evaluation of network architectures. Geophysical Prospecting, 2022, 70 (2): 318- 342.
德武 , 午阳 , 新建 , 等. 基于混合网络U-SegNet的地震初至自动拾取. 石油地球物理勘探, 2020, 55 (6): 1188- 1201.
德武 , 午阳 , 新建 , 等. 一种基于改进的U-Net网络的初至自动拾取研究. 地球物理学进展, 2021, 36 (4): 1493- 1503.
, 沛凡 , 先艺 , 等. 应用图像语义分割网络的微地震事件识别和初至拾取方法. 石油地球物理勘探, 2022, 57 (5): 1011- 1019.
沛凡 , , . 基于Swin Transformer特征提取的微地震初至拾取方法. 地球物理学进展, 2023, 38 (3): 1132- 1142.
辉峰 , , 文昱 . 基于边缘检测的初至波自动拾取方法. 石油地球物理勘探, 2006, 41 (2): 150- 155. 150-155, 159
建平 , 硕伟 , 仁伟 , 等. 面向地震波初至智能拾取的超分辨率深度残差方法研究. 石油地球物理勘探, 2023, 58 (2): 251- 262.
薇薇 , 仁彬 , 相广 , 等. 基于深度学习UNet++网络的初至波拾取方法. 地球物理学进展, 2021, 36 (1): 187- 194.
志刚 , 秀峰 . TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展. 岩石力学与工程学报, 2003, 22 (8): 1399- 1402.
树林 , , , 等. 一种实现初至波自动拾取的方法. 石油物探, 2005, 44 (2): 163- 166.
英杰 , 银坡 , 宇东 , 等. 一种基于地震图像深度语义分割的初至拾取方法. 地球物理学进展, 2022, 37 (3): 1122- 1131.
联生 . 基于深度学习的复杂地质条件下地震波初至拾取研究. 地球物理学进展, 2022, 37 (4): 1657- 1668.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(11313 KB)

Accesses

Citation

Detail

Sections
Recommended

/