Research on fracture segmentation of FMI logging images based on deep learning

YuFan CHEN, Yang WANG, Wei JIANG, YongSheng WANG, QingYan MEI, Xin WANG

Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 143-154.

PDF(7224 KB)
Home Journals Progress in Geophysics
Progress in Geophysics

Abbreviation (ISO4): Prog Geophy      Editor in chief:

About  /  Aim & scope  /  Editorial board  /  Indexed  /  Contact  / 
PDF(7224 KB)
Prog Geophy ›› 2025, Vol. 40 ›› Issue (1) : 143-154. DOI: 10.6038/pg2025HH0480

Research on fracture segmentation of FMI logging images based on deep learning

Author information +
History +

Abstract

In the process of reservoir drilling and development, it is of great significance to accurately extract, identify and evaluate the fractures in the formation to guide the drilling and development of oil and gas exploration. To solve the problem of imprecise fracture region segmentation by traditional methods, a fracture segmentation method based on Formation Micro-Scanner Image based on deep learning is proposed. Firstly, F-Criminisi algorithm is used to repair the blank strip with missing pixel information in the original FMI logging image. Then, a generative adversus-network based on U-Net is constructed, and dual attention mechanism is introduced to construct a fracture segmentation model to achieve accurate fracture segmentation under complex background. Combining pixel and edge information, loss function is designed to enable the model to more accurately segment the fracture and background region in the logging image and make the fracture boundary in the segmentation result clearer. In this paper, the proposed model is tested by using real FMI logging image of carbonate reservoir. The results show that the Dice coefficient of the proposed fracture segmentation method is 5% higher than that of the classical fracture segmentation model U-Net. This method can accurately extract fracture information from FMI logging images, and provides a basis for subsequent quantitative calculation of fracture parameters and logging interpretation, and has good practicability.

Key words

Fracture segmentation / Deep learning / Semantic segmentation / Generative adversarial network / Imaging logging / Attention mechanism

Cite this article

Download Citations
YuFan CHEN , Yang WANG , Wei JIANG , et al . Research on fracture segmentation of FMI logging images based on deep learning[J]. Progress in Geophysics. 2025, 40(1): 143-154 https://doi.org/10.6038/pg2025HH0480

References

Badrinarayanan V , Kendall A , Cipolla R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
Chen G H , Wu W S , Wang Z W , et al. Fracture identification by microresistivity scanner log. Well Logging Technology, 1999, 23 (4): 279- 281. 279-281, 298
Criminisi A , Pérez P , Toyama K . Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 2004, 13 (9): 1200- 1212.
Du X Q , Liu X , Xue Z B , et al. A preliminary study on the automatic identification method of electrical imaging logging fractures based on deep learning. Chemical Engineering Management, 2019, (24): 204- 205.
Fan Y D , Pang H W , Jin Y , et al. Intelligent segmentation and recognition of pores and fractures based on imaging logging. Oil Drilling & Production Technology, 2022, 44 (4): 500- 505.
Feng L , Qi Z J , He M F , et al. A model for automatic fractures identification with acoustic imaging logging based on cellular automata. Well Logging Technology, 2003, 27 (6): 474- 476. 474-476, 491
Fu J, Liu J, Tian H J, et al. 2019. Dual attention network for scene segmentation. //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 3141-3149.
Gao X , Xie Q B . Advances in identification and evaluation of fracture. Progress in Geophysics, 2007, 22 (5): 1460- 1465.
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. 2014. Generative adversarial nets. //Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: ACM, 2672-2680.
He F , Liu R L , Bai Y D , et al. Application of ant colony algorithm to FMI logging segmentation. Lithologic Reservoirs, 2014, 26 (2): 114- 117.
Huang J X , Peng S M , Wang X J , et al. Applications of imaging logging data in the research of fracture and ground stress. Acta Petrolei Sinica, 2006, 27 (6): 65- 69.
Isola P, Zhu J Y, Zhou T H, et al. 2017. Image-to-image translation with conditional adversarial networks. //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 5967-5976.
Li B T , Wang Z Z , Kong C X , et al. A new intelligent method of fracture recognition based on imaging logging. Well Logging Technology, 2019, 43 (3): 257- 262.
Li C H , Zhao L , Liu B , et al. Research status and development trend of fractures in carbonate reservoir. Bulletin of Geological Science and Technology, 2021, 40 (4): 31- 48.
Liu H Q , Liu W , Chen D , et al. Identification and parameter calculation of shale in Longmaxi formation pore fractures based on deep learning. Well Logging Technology, 2022, 46 (4): 446- 452.
Lu H T , Zhang Q C . Applications of deep convolutional neural network in computer vision. Journal of Data Acquisition and Processing, 2016, 31 (1): 1- 17.
Lu J A , Wu Z L , Guan X C , et al. Automatically extract fracture parameters from resistivity images by using Hough transform. Well Logging Technology, 2004, 28 (2): 115- 117.
Luo X , Yan J P , Wang M , et al. Optimization and application of borehole wall restoration method of FMI logging image. Well Logging Technology, 2021, 45 (4): 386- 393.
Ma T L , Liu H Q , Liao H B , et al. Fracture identification method combining channel and spatial cross attention. Progress in Geophysics, 2024, 39 (2): 727- 736.
Ou X F , Yan P C , Hu W J , et al. Research of image inpainting algorithm based on image segmentation. Journal of Computational Methods in Sciences and Engineering, 2018, 18 (3): 637- 644.
Peng C , Zou C C . Automatic extraction method for imaging logs crack based on improved ant colony algorithm. Computer Engineering, 2015, 41 (8): 196- 201.
Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. //18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 234-241.
Shelhamer E , Long J , Darrell T . Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651.
Wei B Y , Pan B Z , Yin Q L , et al. Identification of image logging data based on conditional generation adversarial network. Geophysical Prospecting for Petroleum, 2020, 59 (2): 295- 302.
Wu T. 2021. Research on automatic detection algorithm of fractures around wells under small sample conditions [Master's thesis](in Chinese). Chengdu: University of Electronic Science and Technology of China, doi: 10.27005/d.cnki.gdzku.2021.002477.
Yang X H , Zhang X C . Automatic identification of rockfractures using acoustic image logging. China Offshore Oil and Gas (Geology), 2000, 14 (6): 429- 431.
Zhang C E , Pan B Z , Liu Q R , et al. Application of improved ant colony clustering algorithm to volcanic rock lithology identification. Well Logging Technology, 2012, 36 (4): 378- 381.
Zhang H J , Zhou L Y . Research on the extraction of incline fracture of ultrasonic logging image. Journal of Optoelectronics·Laser, 2019, 30 (6): 654- 658.
Zhang Q H , Shi Y P , Chen Y L . Automatic identification of crack in imaging logging based on cellular automaton. Journal of Xi'an University of Science and Technology, 2012, 32 (6): 772- 775.
Zhang X F , Pan B Z . Two-dimensional wavelet transform to identify fractures in imaging logging. Oil Geophysical Prospecting, 2012, 47 (1): 173- 176.
钢花 , 文圣 , 中文 , 等. 利用地层微电阻率成像测井识别裂缝. 测井技术, 1999, 23 (4): 279- 281. 279-281, 298
小强 , , 志波 , 等. 基于深度学习的电成像测井裂缝自动识别方法初探. 化工管理, 2019, (24): 204- 205.
永东 , 惠文 , , 等. 基于成像测井的孔缝智能分割与识别. 石油钻采工艺, 2022, 44 (4): 500- 505.
, 正君 , 明峰 , 等. 基于元胞自动机的声成像测井图像的裂缝自动识别模型. 测井技术, 2003, 27 (6): 474- 476. 474-476, 491
, 庆宾 . 储层裂缝识别与评价方法新进展. 地球物理学进展, 2007, 22 (5): 1460- 1465.
, 瑞林 , 亚东 , 等. 蚁群算法在FMI成像测井图像分割中的应用. 岩性油气藏, 2014, 26 (2): 114- 117.
继新 , 仕宓 , 小军 , 等. 成像测井资料在裂缝和地应力研究中的应用. 石油学报, 2006, 27 (6): 65- 69.
冰涛 , 志章 , 垂显 , 等. 基于成像测井的裂缝智能识别新方法. 测井技术, 2019, 43 (3): 257- 262.
长海 , , , 等. 碳酸盐岩裂缝研究进展及发展趋势. 地质科技通报, 2021, 40 (4): 31- 48.
红岐 , , , 等. 基于深度学习的龙马溪组页岩孔缝识别与参数计算. 测井技术, 2022, 46 (4): 446- 452.
宏涛 , 秦川 . 深度卷积神经网络在计算机视觉中的应用研究综述. 数据采集与处理, 2016, 31 (1): 1- 17.
敬安 , 忠良 , 晓春 , 等. 成像测井中的裂缝自动识别方法. 测井技术, 2004, 28 (2): 115- 117.
, 建平 , , 等. FMI测井图像井壁复原方法优化及应用. 测井技术, 2021, 45 (4): 386- 393.
同乐 , 红岐 , 海博 , 等. 融合通道和空间交叉注意力的裂缝识别方法. 地球物理学进展, 2024, 39 (2): 727- 736.
, 长春 . 基于改进蚁群算法的成像测井裂缝自动提取方法. 计算机工程, 2015, 41 (8): 196- 201.
伯阳 , 保芝 , 秋丽 , 等. 基于条件生成对抗网络的成像测井图像裂缝计算机识别. 石油物探, 2020, 59 (2): 295- 302.
吴桐. 2021. 小样本条件下井周裂缝自动检测算法研究[硕士论文]. 成都: 电子科技大学, doi: 10.27005/d.cnki.gdzku.2021.002477.
杨绪海, 张晓春. 2000. 利用声成像测井数据实现岩石裂缝特征的自动识别. 中国海上油气(地质), 14(6): 429-431.
程恩 , 保芝 , 倩茹 , 等. 改进蚁群聚类算法在火山岩岩性识别中的应用. 测井技术, 2012, 36 (4): 378- 381.
豪洁 , 箩鱼 . 超声测井图像过井裂缝提取算法研究. 光电子·激光, 2019, 30 (6): 654- 658.
群会 , 玉璞 , 有兰 . 成像测井裂缝自动识别元胞自动机方法研究. 西安科技大学学报, 2012, 32 (6): 772- 775.
晓峰 , 保芝 . 二维小波变换在成像测井识别裂缝中的应用研究. 石油地球物理勘探, 2012, 47 (1): 173- 176.

感谢审稿专家提出的修改意见和编辑部的大力支持!

RIGHTS & PERMISSIONS

Copyright ©2025 Progress in Geophysics. All rights reserved.
PDF(7224 KB)

Accesses

Citation

Detail

Sections
Recommended

/